Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
\(A=\frac{n^2+4}{n+5}=\frac{n^2-25+29}{n+5}=n-5+\frac{29}{n+5}\) là phân số rút gọn được suy ra \(\frac{29}{n+5}\)là phân số rút gọn được.
Khi đó \(\left(n+5,29\right)\ne1\)mà \(29\)là số nguyên tố nên ta có \(n+5=29k\Leftrightarrow n=29k-5\).
\(0\le29k-5< 2009\Rightarrow1\le k\le69\)
Vậy có \(69\)số tự nhiên \(n\)thỏa mãn.
Ta có: \(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(ab+bc+ca\right)\le3\left(b^2+c^2+d^2\right)\)
Thay giả thiết vào ta có:
\(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow4a^2-14a+10\le0\Rightarrow1\le a\le\frac{5}{2}\)
Vậy Min a=1 khi b=c=d=2
Max a=5/2 khi b=c=d=3/2
Ta có:a là số nguyên tố nhỏ nhất=>a=2
b là số tự nhiên nhỏ nhất=>b=0
c là số tự nhiên nhỏ nhất > 0=>c=1
d = 3a+2=>d=3*2+2=8.
Vậy bn sinh năm 2018 và bn -1 tuổi(do năm nay là năm 2017).
Nhưng nếu bn -1 tuổi thì bn cũng chưa tồn tại để viết câu hỏi này
=>Bn đến từ tương lai.Mik nói đúng ko nào?