Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{y+2}>\frac{1}{y}>\frac{2}{y+4}\Rightarrow\frac{2}{y+2}>\frac{2}{2y}>\frac{2}{y+4}\)
=>y+2<2y<y+4
*y+2<2y
=>y>2
*y+4>2y
=>y<4
=>y=3
\(\frac{2}{y+2}>\frac{1}{y}>\frac{2}{y+4}=>\frac{2}{y+2}>\frac{2}{2y}>\frac{2}{y+4}=>y+2<2yy=3\)
vậy y=3
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
sửa lại \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\) nhé
x2y2=4=>(xy)2=4
=>xy=-2;2 (1)
x/2=4/y=>xy=8 (2)
=>(1) và (2) mâu thuẫn nhau
=>không có cặp x;y nào
vậy có không cặp x;y
\(\frac{2}{y+2}>\frac{1}{y}>\frac{2}{y+4}\)
\(\Rightarrow\frac{2}{y+2}>\frac{2}{2y}>\frac{2}{y+4}\)
=> y + 2 < 2y < y + 4
=> 2 < y < 4
mà y tự nhiên => y = 3