Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7n-8}{5n-9}\)có giá trị lớn nhất => \(\frac{35n-40}{5n-9}\)có giá trị lớn nhất
\(\frac{35n-40}{5n-9}=\frac{35n-63}{5n-9}+\frac{23}{5n-9}=7+\frac{23}{5n-9}\)suy ra 5n-9 thuộc Ư(23)={+-1, +-23}
refer\(mệt r chỉ muốn bài dễ thoi)
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
refer
hôm qua có r mà
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Đặt \(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=7+\frac{5}{2n-3}\)
ĐỂ \(A_{Max}\Rightarrow2.A_{Max}\Rightarrow\left(\frac{5}{2n-3}\right)_{Max}\)
=>\(2n-3\)là số nguyên dương nhỏ nhỏ nhất co thể
\(\Rightarrow2n-3=1\Rightarrow n=2\)
* Ta có: \(\frac{7n-8}{2n-3}\)= \(\frac{7}{2}\).\(\frac{2}{7}\).\(\frac{7n-8}{2n-3}\)=\(\frac{7}{2}\).\(\frac{14n-16}{14n-21}\)
=\(\frac{7}{2}\).\(\frac{14n-21+5}{14n-21}\)=\(\frac{7}{2}\).(1 +\(\frac{5}{14n-21}\))
=\(\frac{7}{2}\)+\(\frac{5}{4n-6}\)
*Để phân số đó có GTLN thì \(\frac{5}{4n-6}\)có GTLN.
=>4n-6 phải lớn hơn 0 và có GTNN.
*Nếu 4n -6 = 1 thì n =\(\frac{7}{4}\)
( ko thỏa mãn x thuộc N)
*Nếu 4n - 6 = 2 thì n = 2 ( thỏa mãn)
Vậy n = 2 thì phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Đặt \(A=\frac{7n-8}{2n-3}\) ta có :
\(A=\frac{7n-8}{2n-3}=\frac{7}{2}.\frac{2\left(7n-8\right)}{7\left(2n-3\right)}=\frac{7}{2}.\frac{14n-16}{14n-21}=\frac{7}{2}.\left(\frac{14n-21}{14n-21}+\frac{5}{14n-21}\right)\)
\(A=\frac{7}{2}.\left(1+\frac{5}{14n-21}\right)=\frac{7}{2}+\frac{7.5}{2\left(14n-21\right)}=\frac{7}{2}+\frac{7.5}{7\left(4n-6\right)}=\frac{7}{2}+\frac{5}{4n-6}\)
Để A đạt GTLN thì \(\frac{5}{4n-6}\) phải đạt GTLN hay \(4n-6>0\) và đạt GTNN
\(\Rightarrow\)\(4n-6=1\)
\(\Rightarrow\)\(4n=7\)
\(\Rightarrow\)\(n=\frac{7}{4}\) ( loại vì n là số tự nhiên )
Do đó : \(4n-6=2\)
\(\Rightarrow\)\(4n=8\)
\(\Rightarrow\)\(n=2\)
Suy ra :
\(A=\frac{7n-8}{2n-3}=\frac{7.2-8}{2.2-3}=\frac{14-8}{4-3}=\frac{6}{1}=6\)
Vậy \(A_{max}=6\) khi \(n=2\)
Chúc bạn học tốt ~
Ta có:\(\dfrac{7n-8}{5n-9}=\dfrac{35n-40}{5n-9}=\dfrac{7\left(5n-9\right)+23}{5n-9}=\dfrac{7\left(5n-9\right)}{5n-9}+\dfrac{23}{5n-9}=7+\dfrac{23}{5n-9}\)
\(\Rightarrow\)5n - 9 \(\in\)Ư(23)
\(\Rightarrow\)5n-9= -23
5n-9= -1
5n-9=1
5n-9=23
Vì n là số tự nhiên nên:
\(\Rightarrow\) n=\(\dfrac{-23+9}{5}\)= \(\dfrac{-14}{5}\) ( loại)
n= \(\dfrac{-1+9}{5}=\dfrac{8}{5}\) (loại)
n=\(\dfrac{1+9}{5}=\dfrac{10}{5}=2\) (nhận)
n=\(\dfrac{23+9}{5}=\dfrac{32}{5}\) (loại)
Vậy n = 2 để phân số \(\dfrac{7n-8}{5n-9}\) lớn nhất.
N=2