Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
a có dạng là 4x+2
b có dạng là 4y+2
\(\left(4x+2\right)\left(4y+2\right)\)
\(16xy+8y+8x+4\)
\(4\left(4xy+2y+2x+1\right)⋮4\)
vậy đáp án \(a\left(dư0\right)\)
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5
SỐ dư khi chia A cho 20 là 3. and mình cx play BB nhưng đã nghỉ lâu rồi
a chia 5 dư 4 thì a có dạng 5k + 4
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
\(=5\left(5k^2+8k+3\right)+1\)
Vậy a2 chia 5 dư 1
a là số tự nhiên nên a có 2 dạng: 2k và 2k + 1
TH1: a = 2k
Lúc đó \(a^2=4k^2⋮4\)(dư 0)
TH1: a = 2k + 1
Lúc đó \(a^2=\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)chia 4 dư 1
ミ★Ɱαɾαкαї ★彡:Bạn làm sai rồi kìa.Một số nguyên chia cho 4 thì có 3 số dư mà.Bạn phải xét các trường hợp chia 4 dư \(0,1,2,3\)
Nếu làm theo cách bạn thì khi chia cho 5 hoặc 6 thì sẽ thiếu trường hợp.
THÔI,làm luôn đi cho rồi chuyện:v
Với \(a=4k\) thì \(a^2=\left(4k\right)^2=16k^2⋮4\)
Với \(a=4k+1\) thì \(a^2=\left(4k+1\right)^2=16k^2+8k+1\) chia 4 dư 1
Với \(a=4k+2\) thì \(a^2=\left(4k+2\right)^2=16k^2+16k+4⋮4\)
Với \(a=4k+3\) thì \(a^2=\left(4k+3\right)^2=16k^2+24k+8+1\) chia 4 dư 1
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5
a)
a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)
Ta có:
\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'
\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2
Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2
b)
a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)
Ta có:
\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'
\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5
Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5