Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)
\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)
Học good
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)
\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)
\(=-\frac{1}{100}\cdot\frac{101}{2}\)
\(=-\frac{101}{200}\)
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
2: \(=\dfrac{0.8}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\dfrac{71}{75}\cdot\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\)
\(=\dfrac{4}{5}\cdot\dfrac{5}{3}+\dfrac{71}{300}=\dfrac{471}{300}=\dfrac{157}{100}\)
3: \(=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{2}{6}-\dfrac{2}{8}+\dfrac{2}{10}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
=2/7-2/7=0