Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)
\(=\)\(\left[\left(31.32.33....60\right)\right]\)\(.\)\(\left(\frac{1.2.3....30}{2^{30}}\right)\)\(.\)\(\left(1.2.3....30\right)\)
\(=\)\(\left[\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}\right]\)\(=\)\(1.3.5....59\)
Vậy \(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)\(=\)\(1.3.5....59\)
ta có:Đặt A= \(1.3.5.....59=\frac{1.2.3.4.....59.60}{2.4.6.....60}\)
=\(\frac{1.2.3.....59.60}{2^{30}.\left(1.2.3.....30\right)}=\frac{31.32.....59.60}{2^{30}}\)
= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
vì \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\) = \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
\(\Rightarrow\)A= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
( Điều phải chứng minh)
toán nâng cao lớp 6 đấy bạn nha
\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)
\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)
Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)
Vậy \(A>B.\)
Chúc bạn học tốt.
Ta có:
\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\left(có30số\right)\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}\cdot30=\frac{1}{2}< \frac{4}{5}\)\(\Rightarrow S< \frac{4}{5}\)
ban len mang di , nam nay mk moi len lop 6
chuc ban hoc tot ^-^
hình như sai đề thì phải. Phần A đó, cuối cùng phải là 47.49 chứ
\(\text{Ta có: }\frac{-181818}{313131}=\frac{-18.10101}{31.10101}=\frac{-18}{31}\)
\(\text{Vậy }\frac{-18}{31}=\frac{-181818}{313131}\)
\(\text{Ta có:}\frac{-137}{59}<-1;\frac{-136}{1343}>-1\)
\(\text{Vậy }\frac{-137}{59}<\frac{-136}{1343}\)
Ta có:\(\frac{-31}{-32}=\frac{31}{32}=\frac{31310}{32320}<\frac{31310+7}{32320+7}\)
Vì với P/S \(\frac{a}{b}\)
a<b=> \(\frac{a}{b}<\frac{a+m}{b+m}\left(m\in N,m\ne0\right)\)
Vậy \(\frac{-31}{-32}<\frac{31317}{32327}\)