Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2011.4023+2012}{2012.4023-2011}=\frac{2011.4023+2011+1}{2012.4023-2012-1}=\frac{2011.4023+2011.1+1}{2012.4023-2012.1-1}\)
\(=>\frac{2012.4023+2012.1+1}{2012.4023-2012.1-1}=\frac{2012.\left(4023+1\right)+1}{2012.\left(4023-1\right)-1}\)
\(=\frac{4023+1+1}{4023-1-1}=\frac{4023+2}{4023-2}=\frac{4025}{4021}\)
Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1
<br class="Apple-interchange-newline"><div id="inner-editor"></div>=>2012.4023+2012.1+12012.4023−2012.1−1 =2012.(4023+1)+12012.(4023−1)−1
=4023+1+14023−1−1 =4023+24023−2 =40254021
Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)
\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)
\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)
\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)
\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)
\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)
\(\text{a) }\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Ta co
\(16^{100}< 32^{100}\)
\(\Rightarrow\frac{1}{16^{100}}>\frac{1}{32^{100}}\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
a.
Ta có:
\(\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Vì \(\frac{1}{16^{100}}>\frac{1}{32^{100}}\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b.
Ta có:
\(\left(-32\right)^9=\left[-\left(2^5\right)\right]^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=\left[-\left(2^4\right)\right]^{13}=-\left(2^{52}\right)\)
Vì \(-\left(2^{45}\right)>-\left(2^{52}\right)\Rightarrow\left(-32\right)^9>\left(-16\right)^{13}\)
#Chúc bạn học tốt!#
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
= \(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)
=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)
b)Có \(63^7< 64^7\)
\(64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)
Ta có: (+) (1/32)^7 = [(1/2)^5]^7 =(1/2)^35
(+) (1/16)^9= [(1/2)^4]^9 =(1/2)^36
Vì 35 <36
=> (1/2)^35 > (1/2)^36
=> (1/32)^7 > (1/16)^9
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
b: \(\left(\dfrac{1}{32}\right)^7=\left(\dfrac{1}{2}\right)^{35}\)
\(\left(\dfrac{1}{16}\right)^9=\left(\dfrac{1}{2}\right)^{36}\)
mà 35<36
nên \(\left(\dfrac{1}{32}\right)^7< \left(\dfrac{1}{16}\right)^9\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
Ta có :
\(\left(\frac{1}{32}\right)^7=\frac{1^7}{32^7}=\frac{1}{\left(2^5\right)^7}=\frac{1}{2^{5.7}}=\frac{1}{2^{35}}\)
\(\left(\frac{1}{16}\right)^9=\frac{1^9}{16^9}=\frac{1}{\left(2^4\right)^9}=\frac{1}{2^{4.9}}=\frac{1}{2^{36}}\)
Vì \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\) ( cùng tử, mẫu nào bé hơn thì phân số đó lớn hơn ) nên \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
Vậy \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
Chúc bạn học tốt ~
Ta có : \(\left(\frac{1}{32}\right)^7=\left(\frac{1}{2^5}\right)^7=\frac{1}{2^{35}}\)
\(\left(\frac{1}{16}\right)^9=\left(\frac{1}{2^4}\right)^9=\frac{1}{2^{36}}\)
DO : \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\)\(\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
Tk mk nha !!!