Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(3.24^{100}=3.3^{100}.8^{100}=3^{101}.8^{100}\)
Xét : \(4^{300}\)và \(3^{101}.8^{100}\)ta có :
\(4^{300}=2^{300}.2^{300}=\left(2^2\right)^{150}.\left(2^3\right)^{100}=\)\(4^{150}.8^{100}\)
Vì \(8^{100}=8^{100}\)và \(4^{150}>3^{101}\Rightarrow4^{300}>3^{101}.8^{100}\)
\(\Rightarrow4^{300}+3^{400}>3.24^{100}\)
So sánh :
a) 3300 + 4300 và 3.24100
b) \(\frac{2^{23}+1}{2^{24}+1}\) và \(\frac{2^{24}+1}{2^{25}+1}\)
\(3.24^{100}=3.3^{100}.8^{100}=3^{101}.\left(2^3\right)^{100}=3^{101}.2^{3.100}=3^{101}.2^{300}\)
\(4^{300}=2^{300}.2^{300}=2^{2.150}.2^{300}=\left(2^2\right)^{150}.2^{300}=4^{150}.2^{300}\)
Vì\(3^{101}.2^{300}< 4^{150}.2^{300}\)nên \(3.24^{100}< 4^{300}\Rightarrow3.24^{100}< 3^{300}+4^{300}\)
\(729.24^{100}=3^6.\left(2^3.3\right)^{100}=3^{106}.2^{300}\)
\(4^{300}=2^{300}.2^{300}\)
Ta có: \(2^{300}>2^{212}=\left(2^2\right)^{106}=4^{106}>3^{106}\)
\(\Rightarrow2^{300}.2^{300}>2^{300}.3^{106}\Rightarrow4^{300}>729.24^{100}\)
Vậy \(2^{300}+3^{300}+4^{300}>729.24^{100}\)
\(3^{300}+4^{300}\)
\(=27^{100}.64^{100}\)
\(=1728^{100}>3.24^{100}\)