Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)
b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)
c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)
Theo bài ta có:
\(=\frac{\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+...+\left(\frac{99}{3^{98}}-\frac{98}{3^{98}}\right)+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)}{2}< \frac{1+\frac{1}{2}}{2}=\frac{3}{2}:2=\frac{3}{4}\)
Đpcm
\(2^{150}=2^{3.50}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=3^{2.50}=\left(3^2\right)^{50}=9^{50}\)
\(8^{50}< 9^{50}nen2^{150}< 3^{100}\)
a) Ta thấy số dưới lẫn số mũ của 536 lớn hơn 220 => 536>220
b)Ta có:\(99^{200}=99^{100}.99^{100}\)
\(9999^{100}=\left(99.101\right)^{100}=99^{100}.101^{100}\)
VÌ \(99^{100}.99^{100}< 99^{100}.101^{100}\)
Nên: \(99^{200}< 9999^{100}\)
c)Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì \(8^{50}< 9^{50}\)nên : \(2^{150}< 3^{100}\)
d)\(\sqrt{26+2}=\sqrt{28}=5< x< 6\)
\(\sqrt{26}+\sqrt{2}=5< x< 6+1< y< 2\)
=> \(\sqrt{26+2}< \sqrt{26}+\sqrt{2}\)
Câu d mình l
Ta có : \(3^{75}=3^{3.25}=\left(3^3\right)^{25}=27^{25}\)
\(2^{100}=2^{4.25}=\left(2^4\right)^{25}=16^{25}\)
Vì \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
\(\Rightarrow\)\(3^{75}>2^{100}\)
Vậy \(3^{75}>2^{100}\)
Tk nha ! Happy ♡♡♡
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
Có \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
Hay \(3^{75}>2^{100}\)
có: \(^{2^{150}=\left(2^3\right)^{50}=8^{50}}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì 8<9 nên \(8^{50}< 9^{50}\)
Vậy \(2^{150}< 3^{100}\)
Ta có : 2150 = (23)50 = 850 (1)
3100 = (32)50 = 950 (2)
Từ (1) và (2) => 850 < 950 vậy 2150 < 3100
Điền dấu " < " nhé bạn !
Học tốt nhé !
Đành dùng cách giảm bậc lũy thừa :v Cách này mới nghĩ ra:
\(2^{3^{100}}=2^{\left(3^{50}\right)^2}\) và \(3^{2^{100}}=3^{\left(2^{50}\right)^2}\)
Ta sẽ so sánh: \(2^{3^{50}}\) và \(3^{2^{50}}\)
Ta có: \(2^{3^{50}}=2^{\left(3^5\right)^{10}}\) và \(3^{2^{50}}=3^{\left(2^5\right)^{10}}\)
Ta sẽ so sánh: \(2^{3^5}\)và \(3^{2^5}\)
Lại có: \(2^{3^5}=2^{\left(3^1\right)^5}\) và \(3^{2^5}=3^{\left(2^1\right)^5}\)
Ta sẽ so sánh: \(2^3\) và \(3^2\)
Ta có: \(2^3=8< 9=3^2\) tức là: \(2^3< 3^2\)
Từ đó suy ra: \(2^{3^{100}}< 3^{2^{100}}\)