\(18\)  và     \(\sqrt{15}.\sqrt{17}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

\(18=\sqrt{18^2}=\sqrt{324}\)
\(\sqrt{15}\cdot\sqrt{17}=\sqrt{255}\)
vì \(324>255\Rightarrow\sqrt{324}>\sqrt{255}\Rightarrow18>\sqrt{15}\cdot\sqrt{17}\)

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi

3 tháng 7 2017

Bài này dễ lắm

Câu 1

\(-\sqrt{5}\) lớn hơn \(-2\) . Vì 

\(-\sqrt{5}=-2,2236067977\) 

\(-2=-2\) 

Câu 2

\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì

\(\sqrt{2}+\sqrt{3}=3,146264\)

\(\sqrt{10}=3,16227766\) 

Câu 3

\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\) 

\(8=8\)

\(\sqrt{15}+\sqrt{17}=7,996088972\)

19 tháng 6 2018

8 lớn hơn \(\sqrt{15}\)+\(\sqrt{17}\)

vì \(\sqrt{15}\)+\(\sqrt{17}\)=7,997,,

19 tháng 6 2018

16>căn 15 nhân căn 17, do can 5 nhan can 17 =15,968........<16

chúc bn học tốt!!!!!!!

19 tháng 6 2018

Ta có \(256>255\Leftrightarrow256>15.17\)

                                 \(\Leftrightarrow\sqrt{256}>\sqrt{15.17}\)

                                 \(\Leftrightarrow16>\sqrt{17}.\sqrt{15}\)

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

20 tháng 8 2017

So sánh 

\(a,\sqrt{91}>9\)

\(b,3>\sqrt{5-1}\)

\(c,5\sqrt{17}>20\)

\(d,\sqrt{7}+\sqrt{15}< 7\)

26 tháng 6 2018

8 lớn hơn

26 tháng 6 2018

\(\sqrt{15}+\sqrt{17}\approx7,9961\)

=> \(8>\sqrt{15}+\sqrt{17}\)

hok tốt 

==.==

29 tháng 7 2018

tính

\(\frac{a-\sqrt{ab}}{b-\sqrt{ab}}+\frac{b-\sqrt{ab}}{a+\sqrt{ab}}=\frac{a-ab+b-ab}{ab+b\sqrt{ab}-a\sqrt{ab}-ab}=\frac{a+b}{\sqrt{ab}\left(b-a\right)}\)

còn lại mk chịu

29 tháng 7 2018

bạn ghi rõ hơn nữa được không chứ mình chưa hiểu lắm