\(\dfrac{2^{2020}-1}{2^{2021}-1}\)và D=\(\dfrac{2^{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

17 tháng 9 2020

\(S^{2020}\)\(S^{2021}\)?Thế này sai mất thui.

Vì \(2020< 2021\)nên\(S^{2020}< S^{2021}\).

17 tháng 9 2020

sai đậm nha bạn

28 tháng 3 2021

ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)

\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F

28 tháng 3 2021

E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1

E=1+1/2019+1

E=2/2020

E=1/1010

F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1

F= 1+1/2019+1

F=2/2020

F=1/1010

từ đó ta có E=F(=1/1010)

16 tháng 4 2020

Ta có : \(\frac{2019}{2020}=1-\frac{1}{2020}\)

            \(\frac{2020}{2021}=1-\frac{1}{2021}\)

Vì \(\frac{1}{2020}>\frac{1}{2021}\) nên \(1-\frac{1}{2020}< 1-\frac{1}{2021}\)

\(\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)

Ta có : \(\frac{672}{2017}< \frac{673}{2017}< \frac{673}{2020}\)

\(\frac{\Rightarrow672}{2017}< \frac{673}{2020}\)

16 tháng 4 2020

1.So sánh phân số: \(\frac{2019}{2020}\) và  \(\frac{2020}{2021}\)

Ta có : \(\frac{2019}{2020}\) +  \(\frac{1}{2020}\) =  \(\frac{2020}{2020}\) =  1

           \(\frac{2020}{2021}\) +  \(\frac{1}{2021}\) =  \(\frac{2021}{2021}\) =  1

  \(\frac{1}{2020}\)  >  \(\frac{1}{2021}\) nên  \(\frac{2019}{2020}\)  <  \(\frac{2020}{2021}\)  

Mình chỉ biết mỗi câu này thôi, mình chắc chắn với bạn là câu này đúng không sai đâu

~ Học tốt ~

25 tháng 3 2022

Ta có: \(A=\frac{2020}{2021}+\frac{2021}{2022}\)

\(\Rightarrow A=\frac{2021}{2021}-\frac{1}{2021}+\frac{2022}{2022}-\frac{1}{2022}\)

\(\Rightarrow A=1-\frac{1}{2021}+1-\frac{1}{2022}\)

\(\Rightarrow A=1+1-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021\cdot2022}\)

\(B=\frac{2020+2021}{2021+2022}\)

\(\Rightarrow B=\frac{2021+2022}{2021+2022}-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{4043}\)

Vậy ta sẽ so sánh:

\(1-\frac{1}{2021\cdot2022};\frac{2}{4043}\)

Vì \(2021\cdot2022>4043\)nên \(\frac{1}{2021\cdot2022}< \frac{2}{4043}\)vậy \(1-\frac{1}{2021\cdot2022}>\frac{2}{4043}\)

\(\Rightarrow\frac{2020}{2021}+\frac{2021}{2022}>\frac{2020+2021}{2021+2022}\)

\(\Rightarrow A>B\)

26 tháng 8 2020

S<\(2^{2011}\)

26 tháng 8 2020

Lời giải đâu bạn êy???

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)

Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)

\(\Rightarrow A< B\)

Ta có:

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)

\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)

\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)

\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)

Ta lại có:

\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)

\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)

\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)

Do \(2019^{2021}+1>2019^{2019}+1\)

\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)

\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)