\(\frac{10^{50}+2}{10^{50-1}}\)và B=\(\frac{10^{50}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Ta thấy \(10^{50}>10^{50}-3\)

\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(A< B\)

Mình chưa học đến đó nên mình tịt

9 tháng 5 2018

\(A=\frac{10^{50}+2}{10^{50}+1}=\frac{2}{1}=2\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{-1}{3}\)

\(\Rightarrow A>B\)

11 tháng 5 2017

Ta có: \(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)

Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B

19 tháng 5 2017

Ta có:

\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)

\(10^{50}-1>10^{50}-3\Rightarrow\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)(2 phân số có cùng tử số, mẫu số của phân số nào lớn hơn thì phân  

                                                                                             số đó nhỏ hơn)

\(\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)     

19 tháng 5 2017

\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}.\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}.\)

Do 1050-1 > 1050-3 ; => \(1+\frac{3}{10^{50}-3}>1+\frac{3}{10^{50}-1}\)

=> B > A

6 tháng 4 2018

A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1

B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3

Vì ... bạn tự làm nha.nhớ k đấy

6 tháng 4 2018

A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)

B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì 2010-1 > 2010-3

=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

=> A < B

Vậy A < B

15 tháng 7 2019

b) Áp dụng  tính chất

\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow B< A\)

18 tháng 7 2019

\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow A>B\)

17 tháng 6 2021

mọi người ơi, lm xong bài này trong tối nay hộ mình cái, mình càn gấp lắm rùi