Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có :
\(B=\frac{10^{2015}+1}{10^{2014}+1}>1\)
\(\Rightarrow\frac{10^{2015}+1}{10^{2014}+1}>\frac{10^{2015}+1+9}{10^{2014}+1+9}\) \(=\frac{10^{2015}+10}{10^{2014}+10}=\frac{10.\left(10^{2014}+1\right)}{10.\left(10^{2013}+1\right)}\)
\(=\frac{10^{2014}+1}{10^{2013}+1}=A\)
\(\Rightarrow B>A\)
Vậy B > A
k cho mk nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}=\frac{10^{2014}+10}{10^{2015}+10}=\frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2013}+1}{10^{2014}+1}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
áp dụng tính chất
nếu a/b>1thì a/b<(a+n)/(b+n)
=)))))))))))))))))
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
\(A=\frac{10^{2012}+1}{10^{2013}+1}\)
\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}\)
\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
Nên \(10A>10B\)
Hay \(A>B\)
Vậy : A > B
TA có :
A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)
B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)
Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B
Vậy A < B
a)Ta áp dụng tính chất sau:
Nếu a<b=>a/b<(a+k)/(b+k) (k thuộc N*)
Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9
=>B<1013+10/1014+10
=>B<10.(1012+1)/10.(1013+1)
=>B<1012+1/1013+1=A
=>B<A
b)Ta áp dụng tính chất sau:
Nếu a>b=>a/b>(a+k)/(b+k) (k thuộc N*)
Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99
=>B>102015+100/102014+100
=>B>100.(102013+1)/100.(102012+1)
=>B>102013+1/102012+1=A
=>B>A
Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:
Ta có:
A.10 = \(\frac{10^{12}+10}{10^{12}+1}\) B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)
=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\) =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)
=>A.10 = 1 + \(\frac{9}{10^{12}+1}\) =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)
=>A.10 > B.10
=>A > B
Vậy A > B
quy dong ca A va B ta dc :
\(A=\frac{-109}{10^{2014}}\)
\(B=\frac{-199}{10^{2014}}\)
\(\Rightarrow A>B\)
dễ thôi
ta có :A=-9/10^2013+-19/10^2014=-9/10^2013+-9/10^2014+-10/10^2014
B=-9/10^2014+-19/10^2013=-9/10^2014+-9/10^2013+-10/10^2013
nhìn nhé :cả A và B đều có các số hạng :-9/10^2013 và-9/10^2014
mà -10/10^2014<-10/10^2013
=>A<B
Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)
\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)
\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)
\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)
\(\Rightarrow B< A\)
Vậy A > B
Các bn giúp mình vơi mình đang cần lắm