Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)
Do đó:
a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
sao ko bảo sớm. mấy khi cậu onl.. chắc 1 năm 1 lần. thấy cậu hay lên olm nên tôi mới bắt đầu lên lại đấy chứ
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
a) ta có tan 25 =sin25 phần cos25 và sin25=sin25 phần 1 suy ra sin25 phần cos25> sin25 phần 1 (vì cos25 <1) vậy tan25>sin25( điều 1)
b) ta có cot32= cos32 phần sin32 và cos32= sos32 phần 1 suy ra cos32 phần sin32>cos32 phần 1(vì sin32<1) vậy cot32>cos32
c) ta có tan45=sin45 phần cos45 và cos45= cos45= cos45 phần 1 suy ra sin45 phần cos45> cos45 phần 1(vì cos45<1) vậy tan45>cos45
d) ta có cot60=cos60 phần sin60 và sin30 =cos60 phần 1 suy ra cos60 phần sin60> cos60 phần 1 (vì sin60 <1) vậy cot60>sin30
trong bài 14 (sgk -77) có yêu cầu chứng minh tan = sin phần cos đó bạn