K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

5 tháng 8 2018

a) \(2^{24}=2^{3.8}=8^8\)      \(3^{16}=3^{2.8}=9^8\)

Do \(8^8< 9^8\)=>   \(2^{24}< 3^{16}\)

b)  \(3^{200}=3^{2.100}=9^{100}\);      \(2^{300}=2^{3.100}=8^{100}\)

Do  \(9^{100}>8^{100}\)=>  \(3^{200}>2^{300}\)

c)  \(7^{20}=7^{4.5}=2401^5>71^5\)

Vậy  \(7^{20}>71^5\)

d)  \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\);      \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)

Do  \(8^{10}< 9^{10}\)nên   \(\left(-2\right)^{30}< \left(-3\right)^{20}\)

e) \(\left(-5\right)^9< 0\);   \(\left(-2\right)^{18}=2^{18}>0\)

Vậy  \(\left(-5\right)^9< \left(-2\right)^{18}\)

24 tháng 2 2020

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

24 tháng 2 2020

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

8 tháng 10 2020

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)

c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)

\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)

Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)

\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

31 tháng 8 2018

a, 2^24 > 3^16

b, 5^300>3 ^500

c,99^20 > 9999^10

d, 2^30 +3^44 +4^30 < 3x24^10

21 tháng 10 2016

a)Ta có:\(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

\(27^{10}>25^{10}\Rightarrow3^{30}>5^{20}\)

21 tháng 10 2016
3\(^{30}\)5\(^{20}\)
\(3^{30}=3^{3.10}=\left(3^{ }3\right)^{10}=27^{10}\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)

Do 27>25 nên \(27^{10}>25^{10}\)\(hay\) \(3^{30}>5^{20}\)

còn câu b thì mk chưa tính ra

18 tháng 10 2018

ỦA SAO BẠN GIẢI RA LUÔN RỒI. HAY Zậy?

đúng là hay quá ha.

18 tháng 10 2018

tại mình ấn nhầm

15 tháng 9 2016

2300 VÀ 3200

2300 = ( 23)100 = 8100

3200 = ( 32)100 = 9100

VÌ 9100 > 8100 => 2300 < 3200

NHỮNG CON KHÁC BẠ ĐƯA VỀ CÙNG CƠ SỐ SAU ĐÓ SO SÁNH MŨ SỐ LÀ ĐC