Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g, Ta có :
\(54^8=\left(54^2\right)^4=2916^4\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
Vì 2916 < 9261 nên \(2916^4< 9261^4\)
Vậy \(58^8< 21^{12}\) .
h, Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì 8192 > 3125 nên \(8192^7>3125^7\)
Vậy \(2^{91}>5^{35}\) .
2) a) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)
\(\frac{21}{81^8}=\frac{21}{\left(3^4\right)^8}=\frac{21}{3^{32}}=\frac{21.3}{3^{33}}=\frac{63}{3^{33}}>\frac{1}{3^{33}}\)
=> \(\frac{21}{81^8}>\frac{1}{27^{11}}\)
b) Rõ ràng : 399 < 1121 => \(\frac{1}{399}>\frac{1}{11^{21}}\)
a) \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}\)=> \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=1-\sqrt[3]{\frac{4}{9}}\)
=> x = \(\frac{6}{5}-\frac{6}{5}.\sqrt[3]{\frac{4}{9}}\)
b) => \(\frac{1}{13}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\)
=> \(\left(\frac{1}{2}x-1\right)^4=\frac{13}{48}\)
=> \(\frac{1}{2}x-1=\sqrt[4]{\frac{13}{48}}\) hoặc \(\frac{1}{2}x-1=-\sqrt[4]{\frac{13}{48}}\)
=> \(x=2+2\sqrt[4]{\frac{13}{48}}\) hoặc \(x=2-2\sqrt[4]{\frac{13}{48}}\)
Ta co :\(54^4\&21^{12}\)
\(\Rightarrow21^{12}=\left(21^3\right)^4=9261^4\)
Ta thay :\(54^4<9261^4\)
Vay :\(54^4<21^{12}\)
\(54^4\) = \(\left(2.27\right)^4\) = \(\left(2.3^3\right)^4\) = \(2^4.3^{12}\)
\(21^{12}\) = \(\left(7.3\right)^{12}\) = \(7^{12}.3^{12}\)
có \(7^{12}\) > \(2^{12}\) >\(2^4\) \(\Rightarrow21^{12}\) > \(54^4\)
3^2n = (3^2)^n = 9^n
2^3n = (2^3)^n = 8^n
Vì 9^n > 8^n => 3^2n > 2^3n
7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16
=> 7.2^13 < 2^16
Tk mk nha
bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn
a) 544 giữ nguyên
2112 = ( 213 )4 = 92614
vì 54 < 9261 nên 544 < 2112
Ý a làm như bạn Huy Hoàng indonaca là đúng.
b) Ta có:
\(1+2+...+100=5050=5^2.202\)
\(5^8=5^2.15625\)
Vì \(202< 15625\) => \(1+2+...+100< 5^8\)