Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thao bài ra , ta có
\(a^2+b^2=1,c^2+d^2=1\)
và ac + bd = 0
Theo bất đẳng thức Bunhiacopxki , Ta có :
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2\)
mà ac + bd = 0
\(\Rightarrow\left(ac+bd\right)=0\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2=0\)
, \(\Rightarrow ac=bd\)
\(\Rightarrow ab=cd\Rightarrow\left(ab+cd\right)=0\Rightarrow\left(ab+cd\right)^2=0\)
Vậy \(ab+cd=0\)
Chúc bạn học tốt =))
\(f\left(x\right)=x^3-x^2+3x-3\)
\(=x^2\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\)
Để \(f\left(x\right)>0\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà \(x^2\ge0\forall x\Leftrightarrow x^2+3>0\)
\(\Rightarrow x-1>0\Leftrightarrow x=1\)
\(h\left(x\right)=4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow0\left(x-\frac{7}{2}\right)\left(4x^2+6\right)< 0\)
Mà \(4x^2+6>0\forall x\Leftrightarrow h\left(x\right)< 0\Leftrightarrow x-\frac{7}{2}< 0\Leftrightarrow x< \frac{7}{2}\)
f(x)=x3−x2+3x−3f(x)=x3−x2+3x−3
=x2(x−1)+3(x−1)=x2(x−1)+3(x−1)
=(x2+3)(x−1)=(x2+3)(x−1)
Để f(x)>0⇔(x2+3)(x−1)>0f(x)>0⇔(x2+3)(x−1)>0
Mà x2≥0∀x⇔x2+3>0x2≥0∀x⇔x2+3>0
⇒x−1>0⇔x=1⇒x−1>0⇔x=1
h(x)=4x3−14x2+6x−21<0h(x)=4x3−14x2+6x−21<0
⇔0(x−72)(4x2+6)<0⇔0(x−72)(4x2+6)<0
Mà 4x2+6>0∀x⇔h(x)<0⇔x−72<0⇔x<72
Ta có :
\(3.24^{20}=3^{11}.4^{15}\)
\(\Rightarrow\)\(4^{30}=4^{15}.4^{15}\)
\(\Rightarrow\)\(4^{15}>3^{11}\) ( vì phân nguyên bé và mũ cũng bé )
\(\Rightarrow\)....................................
a) 230 = ( 22 )15 = 415 < 2215 . 315
b) 320 = ( 34 )5 = 815
220 . 55 = ( 24 )5 . 55 = ( 24 . 5 )5 = 805
nên 320 < 220 . 55
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)
Vậy A < 20002
c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 50 < 52 => 2.50 < 2.52
=> E < F
\(a,10^{30}=2^{30}.5^{30}\)
\(2^{100}=\left(2^{50}\right)^2\)
\(\Rightarrow10^{30}< 2^{100}\)
tt