Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
a)
\(10A=\frac{10^{2002}+10}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(10B=\frac{10^{2003}+10}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
=> 10A > 10B => A > B
\(B=\frac{196+197}{197+198}=\frac{196}{197+198}+\frac{197}{197+198}\)
\(\frac{196}{197}>\frac{196}{197+198};\frac{197}{198}>\frac{197}{197+198}\)
=>A>B
\(A=\frac{196}{197}+\frac{197}{198}=\left(1-\frac{1}{197}\right)+\left(1-\frac{1}{198}\right)=1-\frac{1}{197}+1-\frac{1}{198}=1-\frac{1}{197}+\frac{197}{197}-\frac{1}{198}\)\(=1-\frac{198}{197}-\frac{1}{198}=\frac{197}{197}-\frac{198}{197}-\frac{1}{198}=\frac{-1}{197}-\frac{1}{198}<\frac{196+197}{197+198}=\frac{393}{395}\)
B=\(\frac{196+197}{197+198}\)= \(\frac{196}{197+198}\)+ \(\frac{197}{197+198}\)
ta có \(\frac{196}{197+198}\)< \(\frac{196}{197}\)
\(\frac{197}{197+198}\)< \(\frac{197}{198}\)
=> \(\frac{196}{197+198}\)+ \(\frac{197}{197+198}\)< \(\frac{196}{197}\)+ \(\frac{197}{198}\)
=> B < A
Vi 196/197 =196/197
=>ta so sanh 197/198 va 198
198=39204/198
197/198 < 39204/198 (vi 197 < 39204 )
=>A < B
Vay A < B
\(\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Ta có: \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
\(\Rightarrow\frac{10^8+2}{10^8-1}< \frac{10^8}{10^8-3}\)
Ta có:\(\frac{196}{197}+\frac{197}{198}=\left(1-\frac{1}{197}\right)+\left(1-\frac{1}{198}\right)=2-\frac{1}{197}-\frac{1}{198}>2-1=1\)
Mà \(\frac{196+197}{197+198}< \frac{197+198}{197+198}=1\)
\(\Rightarrow\frac{196}{197}+\frac{197}{198}>\frac{196+197}{197+198}\)
c) tương tự câu a
Tham khảo nhé~