Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1
lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3
vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3
Hay A<B
Vậy A<B
Ta có:
\(\frac{2009^{2008+1}}{2009^{2009+1}}=\frac{2009^{2009}}{2009^{2010}}=\frac{1}{2009}\)
\(\frac{2009^{2008+5}}{2009^{2009+9}}=\frac{2009^{2013}}{2009^{2018}}=\frac{1}{2009^5}\)
=>Đẳng thức trên lớn hơn đẳng thức dứi(vì 2009<2009^5)
Vậy.......
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
ta có \(\frac{2008}{2008}=1\)
=> \(2007+\frac{2008}{2008}=2008\)
=>M>N