Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)
a) Ta có \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{26}>\sqrt{25}=5\)
Khi đó \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Mà \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) suy ra \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy....
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
vì 8 < 9 và 75 = 75
=> 875 < 975
=> 2225 < 3150
b) \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}>25^{18}=5^{36}>5^{35}\)
\(\Rightarrow2^{91}>5^{35}\)
c) \(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 mà 100 = 100
=> \(5^{300}< 3^{500}\)
Bài nì lp 6 lm nhìu rùi mà
Ta có:
+ 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975
=> 3225 < 3150
+ 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
+ 5300 = (53)100 = 125100
3500 = (35)100 = 243100
Vì 125100 < 243100
=> 5300 < 3500
Ta sẽ so sánh \(5^{199}\) và \(3^{300}\)
Mà:\(5^{199}< 5^{200}=25^{100}< 27^{100}=3^{300}\)
\(\Rightarrow5^{199}< 3^{300}\Rightarrow\frac{1}{5^{199}}>\frac{1}{3^{300}}\)