K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{11^2}=0,558032194\)

\(\frac{5}{12}=0,416666666\)

\(\Rightarrow0,558032194\)>   \(0,4166666667\)

30 tháng 8 2021

giúp mik với mn ơi mik cần gấp

21 tháng 6 2019

a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)

\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)

\(=3^2-\left(120-2\cdot89\right)\)

\(=9--58=9+58=67\)

21 tháng 6 2019

1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)

\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)

\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)

\(=9-\left[120-89\cdot2\right]\)

\(=9-\left[120-178\right]=9-(-58)=67\)

b, Tương tự như bài a

2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+32=56+56\)

\(\Leftrightarrow4^x\cdot5+32=112\)

\(\Leftrightarrow4^x\cdot5=80\)

\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)

\(b,24:(2x-1)^3-2=1\)

\(\Leftrightarrow24:(2x-1)^3=3\)

\(\Leftrightarrow(2x-1)^3=8\)

\(\Leftrightarrow(2x-1)^3=2^3\)

\(\Leftrightarrow2x-1=2\)

Làm nốt là xong thôi

25 tháng 4 2018

Bài 4 : 

\(D=11+11^2+11^3+...+11^{1000}\)

\(11D=11^2+11^3+11^4+...+11^{1001}\)

\(11D-D=\left(11^2+11^3+11^4+...+11^{1001}\right)-\left(11+11^2+11^3+...+11^{1000}\right)\)

\(10D=11^{1001}-11\)

\(D=\frac{11^{1001}-11}{10}\)

Vậy \(D=\frac{11^{1001}-11}{10}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

Bài 1 : 

\(A=1+2+2^2+....+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)

\(A=2^{2016}-1\)

Vậy \(A=2^{2016}-1\)

Chúc bạn học tốt ~ 

20 tháng 8 2020

a) Đặt A = \(\frac{5^{12}+1}{5^{13}+1}\Rightarrow5A=\frac{5^{13}+5}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

Đặt \(B=\frac{5^{11}+1}{5^{12}+1}\Rightarrow5B=\frac{5^{12}+5}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

20 tháng 8 2020

Áp dụng công thức : \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m\in N\right)\)

Ta có : \(A=\frac{5^{12}+1}{5^{13}+1}< 1\)

\(\Leftrightarrow A=\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}=\frac{5^{12}+5}{5^{13}+5}=\frac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)

\(\Leftrightarrow A< B\)