\(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

\(1)\) Ta có : 

\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)

Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)

\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Chúc bạn học tốt ~ 

4 tháng 7 2018

1)  \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)

2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)

\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)

3)  \(2=\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\)\(2-1>\sqrt{3}-1\)

hay  \(1>\sqrt{3}-1\)

4)  \(9-4\sqrt{5}< 16\)

5) \(\sqrt{2}>\sqrt{1}=1\)

\(\Rightarrow\)\(\sqrt{2}+1>2\)

5 tháng 7 2018

Cảm ơn bạn nhiều nha!

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán

So sánh: a) 4\(\sqrt{7}\) và 3\(\sqrt{13}\) b) 3\(\sqrt{12}\) và 2\(\sqrt{16}\) c) \(\frac{1}{4}\)\(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\) d) \(\frac{1}{2}\)\(\sqrt{\frac{17}{2}}\) và \(\frac{1}{3}\)\(\sqrt{19}\) e) 3\(\sqrt{3}\) -2\(\sqrt{2}\) và 2 f) \(\sqrt{7}\) + \(\sqrt{5}\) và \(\sqrt{49}\) g) \(\sqrt{2}\) + \(\sqrt{11}\) và \(\sqrt{3}\) +5 h)\(\frac{1}{2}\) \(\sqrt{\frac{17}{2}}\) và \(\frac{1}{3}\) \(\sqrt{19}\) i) \(\sqrt{21}\) -\(\sqrt{5}\) và \(\sqrt{20}\)...
Đọc tiếp

So sánh:

a) 4\(\sqrt{7}\) và 3\(\sqrt{13}\)

b) 3\(\sqrt{12}\) và 2\(\sqrt{16}\)

c) \(\frac{1}{4}\)\(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\)

d) \(\frac{1}{2}\)\(\sqrt{\frac{17}{2}}\)\(\frac{1}{3}\)\(\sqrt{19}\)

e) 3\(\sqrt{3}\) -2\(\sqrt{2}\) và 2

f) \(\sqrt{7}\) + \(\sqrt{5}\)\(\sqrt{49}\)

g) \(\sqrt{2}\) + \(\sqrt{11}\)\(\sqrt{3}\) +5

h)\(\frac{1}{2}\) \(\sqrt{\frac{17}{2}}\)\(\frac{1}{3}\) \(\sqrt{19}\)

i) \(\sqrt{21}\) -\(\sqrt{5}\)\(\sqrt{20}\) -\(\sqrt{6}\)

j) \(\frac{1}{4}\) \(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\)

k) \(\sqrt{\sqrt{6}+\sqrt{20}}\)\(\sqrt{1+\sqrt{5}}\)

l) \(\sqrt{7}\) -\(\sqrt{2}\) và 1

m) \(\sqrt{30}\) - \(\sqrt{29}\)\(\sqrt{29}\)-\(\sqrt{28}\)

n) \(\sqrt{8}+\sqrt{5}\)\(\sqrt{7}+\sqrt{6}\)

o) \(\sqrt{27}+\sqrt{6}+1\)\(\sqrt{48}\)

p) 5\(\sqrt{2}\) + \(\sqrt{75}\) và 5\(\sqrt{3}\) +\(\sqrt{50}\)

q) \(\sqrt{5}\) - \(\sqrt{3}\)\(\frac{1}{2}\)

4
AH
Akai Haruma
Giáo viên
14 tháng 6 2019

a)

\(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(\sqrt{112}< \sqrt{117}\Rightarrow 4\sqrt{7}< 3\sqrt{13}\)

b) \(3\sqrt{12}=\sqrt{3^2.12}=\sqrt{9.2^2.3}=2\sqrt{27}>2\sqrt{16}\)

c)

\(\frac{1}{4}\sqrt{82}=\sqrt{\frac{82}{16}}=\sqrt{\frac{41}{8}}=\sqrt{5+\frac{1}{8}}\)

\(6\sqrt{\frac{1}{7}}=\sqrt{\frac{36}{7}}=\sqrt{5+\frac{1}{7}}\)

\(\sqrt{5+\frac{1}{8}}< \sqrt{5+\frac{1}{7}}\Rightarrow \frac{1}{4}\sqrt{82}< 6\sqrt{\frac{1}{7}}\)

d)

\(\frac{1}{2}\sqrt{\frac{17}{2}}=\sqrt{\frac{17}{8}}=\sqrt{2+\frac{1}{8}}\)

\(\frac{1}{3}\sqrt{19}=\sqrt{\frac{19}{9}}=\sqrt{2+\frac{1}{9}}\)

\(\sqrt{2+\frac{1}{8}}>\sqrt{2+\frac{1}{9}}\Rightarrow \frac{1}{2}\sqrt{\frac{17}{2}}> \frac{1}{3}\sqrt{19}\)

AH
Akai Haruma
Giáo viên
14 tháng 6 2019

e)

\(3\sqrt{3}-2\sqrt{2}=\sqrt{27}-\sqrt{8}\)

\(\sqrt{27}>\sqrt{25}; \sqrt{8}< \sqrt{9}\Rightarrow \sqrt{27}-\sqrt{8}> \sqrt{25}-\sqrt{9}=5-3=2\)

Vậy \(3\sqrt{3}-2\sqrt{2}>2\)

f)

\(\sqrt{7}+\sqrt{5}< \sqrt{9}+\sqrt{9}=6\)

\(\sqrt{49}=7\)

\(\Rightarrow \sqrt{7}+\sqrt{5}< 6< 7=\sqrt{49}\)
g)

\(\sqrt{2}< \sqrt{3}; \sqrt{11}< \sqrt{25}=5\)

\(\Rightarrow \sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

h) Lặp lại câu d

i)

\(\sqrt{21}>\sqrt{20}\); \(\sqrt{5}< \sqrt{6}\)

\(\Rightarrow \sqrt{21}-\sqrt{5}> \sqrt{20}-\sqrt{6}\)

16 tháng 6 2018

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)