K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(\sqrt{17}+\sqrt{50}-1>\sqrt{16}+\sqrt{49}-1\)

\(=4+7-1=10=\)\(\sqrt{100}>\sqrt{99}\)

17 tháng 8 2018

\(\sqrt{17}+\sqrt{50}-1>\sqrt{99}\)

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

23 tháng 7 2016

mình chỉ giải được phần này thôi

b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10

B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10

=> A > B

4 tháng 7 2018

\(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)
\(\sqrt{61}< \sqrt{64}=8\)
Vậy \(\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)

13 tháng 8 2017

B=\(\sqrt{17}+\sqrt{5}+1\)>\(\sqrt{16}+\sqrt{4}+1\)=4+2+1=7=\(\sqrt{49}\)>\(\sqrt{45}\)

Vậy B>C

16 tháng 6 2018

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)

\(\sqrt{27}>\sqrt{25}=5.\)

\(\sqrt{26}>\sqrt{25}=5.\)

\(\sqrt{27}+\sqrt{26}+1>5+5+1=11.\)

\(\sqrt{99}< \sqrt{100}=10\)

\(\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)

4 tháng 9 2016

ta có : \(\sqrt{27}+\sqrt{26}+1\approx11,29\)

                \(\sqrt{99}\approx9,94\)

\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)