Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{-13}{21}=\dfrac{-26}{42}\)
\(B=\dfrac{-9}{14}=\dfrac{-27}{42}\)
mà -26>-27
nên A>B
b: \(A=\dfrac{99}{101}=1-\dfrac{2}{101}\)
\(B=\dfrac{2011}{2013}=1-\dfrac{2}{2013}\)
mà 2/101>2/2013
nên A<B
Bài này có thể làm như sau :
-Bạn quy đồng lên cho cùng mẫu (Nhớ rút gọn phân số trên trc vì chưa rút gọn)
Để ý cách lập phép so sánh để có con số nhỏ và dễ tính nhất !!! :) Chúc pn hok tốt ok
- Mik thấy ghi toán l7 chắc bn lớp 7 đúng ko ? Vậy qua trang mik giúp mik vài câu hỏi nhé ! Mai mik KT 1 tiết sử r thanks bn trc
#k_cho_mik_nha
−13/39 = −21/63
1/234567 > −2/14
−39/65 = −21/35
1/2012 > −1/14
Giải:
a) Theo đề ra, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\) và \(a+b=72\) (Sửa x+y =72)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)
\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)
Vậy ...
b) Theo đề ra, ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)
\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)
\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)
Vậy ...
c) Theo đề ra, ta có:\(\dfrac{12}{x}=\dfrac{3}{y}\) và \(x-y=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)
\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)
\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)
Vậy ...
d) Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b-c=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)
Đề câu này sai nhé!
Chúc bạn học tốt!
a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)
c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)
d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)
=> Không thể làm
Bài 2:
a, Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{-5}=\dfrac{a+b}{2+\left(-5\right)}=\dfrac{21}{-3}=-7\)
(do \(a+b=21\))
\(\Rightarrow\left\{{}\begin{matrix}a=-7.2=-14\\b=-7.\left(-5\right)=35\end{matrix}\right.\)
Vậy \(a=-14;b=35\)
b, Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\dfrac{-10}{a}=\dfrac{-15}{b}=\dfrac{-10-\left(-15\right)}{a-b}=\dfrac{5}{-5}=-1\)
(do \(a-b=-5\))
\(\Rightarrow\left\{{}\begin{matrix}a=-10:\left(-1\right)=10\\b=-15:\left(-1\right)=15\end{matrix}\right.\)
Vậy \(a=10;b=15\)
Chúc bạn học tốt!!!
c, Ta có:
\(3x=2y\Rightarrow21x=14y\)
\(7y=5z\Rightarrow14y=10z\)
\(\Rightarrow21x=14y=10z\Rightarrow\dfrac{21x}{210}=\dfrac{14y}{210}=\dfrac{10z}{210}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
(do \(x-y+z=32\))
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy \(x=20;y=30;z=42\)
Chúc bạn học tốt!!!
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 151. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
a. Đặt \(\dfrac{x}{-3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=-3k\\y=5k\end{matrix}\right.\)
mà \(x.y=\dfrac{-5}{27}\)
hay \(-3k.5k=\dfrac{-5}{27}\)
\(\Rightarrow-15.k^2=\dfrac{-5}{27}\)
\(\Rightarrow k^2=\dfrac{1}{81}=\left(\pm\dfrac{1}{9}\right)^2\)
Với \(k=\dfrac{1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{5}{9}\end{matrix}\right.\)
Với \(k=\dfrac{-1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-5}{9}\end{matrix}\right.\)
Vậy.......
b. Từ \(\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{3}=\dfrac{z}{5}\end{matrix}\) \(\Rightarrow\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\) \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}=\dfrac{x-y+z}{9-12+20}=\dfrac{32}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{32}{17}\Rightarrow x=\dfrac{32.9}{17}=\dfrac{288}{17}\\\dfrac{y}{12}=\dfrac{32}{17}\Rightarrow y=\dfrac{32.12}{17}=\dfrac{384}{17}\\\dfrac{z}{20}=\dfrac{32}{17}\Rightarrow z=\dfrac{32.20}{17}=\dfrac{640}{17}\end{matrix}\right.\)
Vậy.........
a, Có: \(25^{200}=\left(5^2\right)^{200}=5^{400}\)
Vì \(5^{400}=5^{400}\) mà \(25^{200}=5^{400}\Rightarrow5^{400}=25^{200}\)
c, Có:
a/ 263 và 342
Ta có: 263=(23)21=821
342=(32)21=921
mà 821<921
vậy 263<342
b/5400 và 25200
Ta có: 25200=(52)200=5400
mà 5400=5400
vậy 5400=25200
c/ \(\left(\dfrac{-1}{16}\right)^{100}v\text{à}\left(\dfrac{-1}{2}\right)^{500}\)
Ta có: \(\left(\dfrac{-1}{2}\right)^{500}=\left(\left(\dfrac{-1}{2}\right)^5\right)^{100}=\left(\dfrac{-1}{32}\right)^{100}\)
mà: \(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{32}\right)^{100}\)
vậy\(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{2}\right)^{500}\)
a, Ta có:
\(\dfrac{-13}{39}=\dfrac{-1}{3}\) và \(-\dfrac{21}{63}=\dfrac{-1}{3}\)
Vì \(\dfrac{-1}{3}=\dfrac{-1}{3}\) nên \(\dfrac{-13}{39}=-\dfrac{21}{63}\)
b, Ta có:
\(\dfrac{1}{234567}>0\) (số hữu tỉ dương) và \(-\dfrac{2}{14}< 0\) (số hữu tỉ âm)
=> \(\dfrac{1}{234567}>-\dfrac{2}{14}\)
c\(\dfrac{1}{2012}>-\dfrac{1}{14}\), Ta có:
\(\dfrac{-39}{65}=\dfrac{-3}{5}\) và \(-\dfrac{21}{35}=\dfrac{-3}{5}\)
mà \(\dfrac{-3}{5}=\dfrac{-3}{5}\) nên \(\dfrac{-39}{65}=-\dfrac{21}{35}\)
d,Ta có:
\(\dfrac{1}{2012}>0\) (số hữu tỉ dương) và \(-\dfrac{1}{14}< 0\) (số hữu tỉ âm)
Vậy suy ra: \(\dfrac{1}{2012}>-\dfrac{1}{14}\)
a,=
b,>
c,=
d,>