Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)
ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a}{b}<\frac{a+n}{b+n}\)
áp dụng từ đó ta có thể so sánh.
ví dụ: 2/7 và 4/9
ta thấy 2<7 => \(\frac{2}{7}<\frac{2+2}{7+2}=\frac{4}{9}\)
cứ thế làm tiếp nha. ở 3 ví dụ này mình thấy a đều nhỏ hơn b đó. vậy là đều nhỏ hơn rồi
nếu a/b<1 => a/b< a+n/ b+n
nếu a/b>1=> a/b> a+n/ b+n
còn các câu áp dụng thì tự làm nhé
Vì tgABC cân tại A nên ^B=^C mà ^A=2*^B nên ^A=2*^C
Xét tgABC có: ^A+^B+^C=1800
nên 2*^C+^C+^C=1800
4*^C=180
^C=180/4
^C=450
\(a,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\left(\frac{3}{7}\right)^2\right)^{10}.\frac{3}{7}:\left(\frac{9}{49}\right)^6=\left(\frac{9}{49}\right)^{10}.\frac{3}{7}:\left(\frac{9}{49}\right)^6\)
\(=\left(\left(\frac{9}{49}\right)^{10}:\left(\frac{9}{49}\right)^6\right).\frac{3}{7}=\left(\frac{9}{49}\right)^{10-6}.\frac{3}{7}=\left(\frac{9}{49}\right)^4.\frac{3}{7}=\left(\left(\frac{3}{7}\right)^2\right)^4.\frac{3}{7}\)
\(=\left(\frac{3}{2}\right)^8.\frac{3}{7}=\left(\frac{3}{2}\right)^9\)
\(b,3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}=2+\left(\frac{1}{2}\right)^3=2+\frac{1}{6}=2\frac{1}{6}\)
Bài 10:
Đặt \(\dfrac{a}{5}=\dfrac{b}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=4k\end{matrix}\right.\)
Ta có: \(a^2-b^2=36\)
\(\Leftrightarrow25k^2-16k^2=36\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=10\\b=4k=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=-10\\b=4k=-8\end{matrix}\right.\)