Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2^{2008}-3}{2^{2007}-1}=\frac{\left(2^{2008}-2\right)-1}{2^{2007}-1}=\frac{2\left(2^{2007}-1\right)-1}{2^{2007}-1}=2-\frac{1}{2^{2007}-1}\)
CMTT ta có \(\frac{2^{2007}-3}{2^{2006}-1}=2-\frac{1}{2^{2006}-1}\)
MÀ 22006-1<22007-1 => \(\frac{1}{2^{2006}-1}>\frac{1}{2^{2007}-1}\Rightarrow2-\frac{1}{2^{2006}-1}< 2-\frac{1}{2^{2007}-1}\)
Từ đó \(\Rightarrow\frac{2^{2008}-3}{2^{2007}-1}>\frac{2^{2007}-3}{2^{2006}-1}\)
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.
\(S_n=\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}\)
Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)
\(=\left(1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}\right)-\left(\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}+\frac{1}{a^n}\right)\)
\(=1-\frac{1}{a^n}< 1\Rightarrow S_n< \frac{1}{a-1}\left(1\right)\)
Áp dụng BĐT ( 1 ) cho \(a=2008\)và mọi n bằng 2 , 3 , ..... , 2007, ta được:
\(B=\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}< \frac{1}{2007}\)
\(+\left(\frac{1}{2007}\right)^2+...+\left(\frac{1}{2007}\right)^{2007}\left(2\right)\)
Lại áp dụng BĐT ( 1 ) cho \(a=2007\)và \(n=2007\), ta được:
\(\frac{1}{2007}+\frac{1}{2007^2}+...+\frac{1}{2007^{2007}}< \frac{1}{2006}=A\left(3\right)\)
Từ ( 2 ) và ( 3 ) => \(B< A.\)
Ta có :
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)
\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)
Vậy \(\frac{A}{B}=\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)
\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)
\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)
\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)
Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)
\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)
Bí òi
Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...............+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+........+\left(1+\frac{1}{2008}\right)+1\)
\(B=\frac{2009}{2}+\frac{2009}{3}+..............+\frac{2009}{2008}+\frac{2009}{2009}\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2009}\right)\)
Khi đó: \(\text{}\text{}\text{}\frac{A}{B}=\frac{1}{2009}\)
Chuc bạn học tốt!!
Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)
\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)
Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}}{2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)}\)
hay \(\frac{A}{B}=\frac{1}{2009}\)
\(B=\frac{2007}{2}+1+\frac{2006}{3}+1+......+\frac{2}{2007}+1+\frac{1}{2008}+1+1\)
\(=\frac{2009}{2}+\frac{2009}{3}+........+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)=2009.A\)
=> A/ B = 1/ 2009
Biết nhưng ko trả lời
ki bo quá nhỉ bạn ấy bỏ rùi