Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 7^9/1+7+7^2+....+7^8
= 1 + 7^9-1/1+7+....+7^8 + 1/1+7+....+1/7^8
= 1 + 7-1 + 1/1+7+....+7^8
= 7 + 1/1+7+....+7^8
Tương tự : B = 5 + 1/1+5+....+5^8
Vì 1/1+5+.....+5^8 < 1 => B < 5+1 = 6
Mà A > 6 => A > B
k mk nha
A = 0
B > 1
=)) A < B
T ik nha bạn =))
Chúc bạn học tốt nhé !!!
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)
= \(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)
tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)
Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)< \(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)
=> A > B
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1
a) 2/7+-3/8+11/7+1/3+1/7+5/-8
=(2/7+11/7+1/7)+(3/8+-5/8)+1/3
=2+2+1/3
=4+1/3
=13/3
b) -3/8+12/25+5/-8+2/-5+13/25
=(-3/8+-5/8)+(12/25+13/25)+-2/5
=-1+1+-2/5
=0+-2/5
=-2/5
c)7/8+1/8*3/8+1/8*5/8
=7/8+1/8*(3/8+5/8)
=7/8+1/8*1
=7/8+1/8
=1