Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)
b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)
c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)
\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)
C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)
\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)
\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)
d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)
\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)
\(\Rightarrow A=\sqrt{2}\)
Bài 4:
a: \(=2-\sqrt{3}+\sqrt{3}-1=1\)
b: \(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
c: \(=\dfrac{\left(15\cdot10\sqrt{2}-3\cdot15\sqrt{2}+2\cdot5\sqrt{2}\right)}{\sqrt{10}}\)
\(=15\cdot\sqrt{20}-3\cdot\sqrt{45}+2\cdot\sqrt{5}\)
\(=30\sqrt{5}-9\sqrt{5}+2\sqrt{5}=33\sqrt{5}\)
Bình phương hai vế liên tiếp ta có \(\sqrt{3\sqrt{2}}=3\sqrt{2}=\sqrt{18}=18\)
\(\sqrt{2\sqrt{3}}=2\sqrt{3}=\sqrt{12}=12\)
\(\rightarrow18>15\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)
\(=\sqrt{5+\sqrt{2}}\)
e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)
\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)
\(=2+\sqrt{9-4\sqrt{5}}\)
\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2+\sqrt{5}-2=\sqrt{5}\)
f) đề sai nhé:
\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)
g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)
h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)
Ta có : \(a)\)\(6+2\sqrt{2}\) và 9
\(\Rightarrow9-6-2\sqrt{2}=3-2\sqrt{2}\)
\(=2-2\sqrt{2}+1\)
\(=(\sqrt{2}-1)^2>0\)
\(\Rightarrow9-6-2\sqrt{2}>0\Rightarrow9>6+2\sqrt{2}\)
\(b)\sqrt{2}+\sqrt{3}\)và 3
\(\Rightarrow\sqrt{[(\sqrt{2}+\sqrt{3})}^2]\)
\(=\sqrt{(5+2\sqrt{6}})\)
\(=\sqrt{(5+\sqrt{24}})=3=\sqrt{9}=\sqrt{(5+\sqrt{16})}\)
\(=\sqrt{(5+24)}>\sqrt{(5+16)}\Rightarrow\sqrt{2+\sqrt{3}}>3\)
\(c)\sqrt{11}-\sqrt{3}\)và 2
\(=\sqrt{11}-\sqrt{3}=\sqrt{[(\sqrt{11}-\sqrt{3}})^2=\sqrt{(14-2\sqrt{33})}\); \(2=\sqrt{4}=\sqrt{(14-10)}=\sqrt{(14-2\sqrt{25})}\Rightarrow\sqrt{(14-2\sqrt{33})}< \sqrt{(14-2\sqrt{25})}\)
\(\Rightarrow\sqrt{11}-\sqrt{3}< 2\)
Chúc bạn học tốt~
a) \(6+2\sqrt{2}=6+\sqrt{2^2.2}=6+\sqrt{8}\)
\(9=6+3=6+\sqrt{9}\)
Ta có: \(\sqrt{9}>\sqrt{8}\)
\(\Rightarrow6+\sqrt{3}>6+\sqrt{8}\)
\(\Rightarrow9>6+2\sqrt{2}\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2.\sqrt{2}.\sqrt{3}+3=5+2.\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
Ta có: \(\sqrt{24}>\sqrt{16}\)
\(\Rightarrow5+\sqrt{24}>5+\sqrt{16}\)
\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)
\(\Rightarrow\sqrt{2}+\sqrt{3}>3\)
c) làm tương tự như câu c
mk ms học lớp 7 nên có gì sai sót thì bỏ qua nha