K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a > 0; b > 0; a khác b ta có:

\(\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{2016+2014}{2}}\)

\(\Rightarrow\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{4030}{2}}\)

\(\Rightarrow\sqrt{2016}+\sqrt{2014}< \sqrt{2015}.2\)

\(\Rightarrow\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

6 tháng 10 2020

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

6 tháng 10 2020

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)

12 tháng 9 2017

\(\forall n\in N;n\ne0\) Ta có : \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n-1}{n\left(n+1\right)}=\frac{0}{\left(n+1\right)n}=0\)

\(\Rightarrow\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left[\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}\right]}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.....+1+\frac{1}{1100}-\frac{1}{1101}\)

\(=1099+\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1100}\right)-\left(\frac{1}{3}+\frac{1}{4}+....+\frac{1}{1101}\right)\)

\(=1099+\frac{1}{2}-\frac{1}{1101}=\frac{2421097}{2202}\)

27 tháng 8 2017

\(\Sigma\left(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}\right)\) cho x chạy từ 2-2014

kq 43.47453781

19 tháng 2 2018

sửa lại tí nha

Cho a,b>0 thoa mãn ab>2015a+2016b. CMR: \(a+b>\left(\sqrt{2015}+\sqrt{2016}\right)^2\)

16 tháng 7 2017

B = \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)

B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{x+2015-x-2016}\)

B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{-1}\)

B = \(-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{2015}+\sqrt{2016}\)

B = \(-\sqrt{x}+\sqrt{2016}\)

Khi x = 2017

B = \(-\sqrt{2017}+\sqrt{2016}=\sqrt{2016}-\sqrt{2017}\)

16 tháng 7 2017

Gợi ý: sử dụng trục căn thức.