Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà : \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}-\sqrt{2006}}\)
Nến : \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
\(\left(\sqrt{2005}+\sqrt{2007}\right)^2=4012+2\sqrt{2005.2007}\)
\(=4012+2\sqrt{\left(2016-1\right)\left(2016+1\right)}=4012+2\sqrt{2016^2-1}\)
\(\left(2\sqrt{2006}\right)^2=4012+4012=4012+2\sqrt{2016^2}\)
=>\(\left(\sqrt{2015}+\sqrt{2017}\right)^2< \left(2\sqrt{2016}\right)^2\Rightarrow\sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}\)
Ta có: \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà: \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Nên: \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
=>\(\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
Áp dụng BĐT CAuchy-Schwarz ta có:
Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)
\(\le\left(1+1\right)\left(2003+2005\right)\)
\(=2\cdot4008=8016\)
\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)
Đặt A = \(\sqrt{2004}+\sqrt{2006}\)
B = \(2\sqrt{2005}\)
Ta có : \(A^2=\left(\sqrt{2004}+\sqrt{2006}\right)^2\)
\(=\sqrt{2004}^2+2\sqrt{2004.2006}+\sqrt{2006}^2\)
\(=2004+2\sqrt{\left(2005-1\right)\left(2005+1\right)}+2006\)
\(=4010+2\sqrt{2005^2-1}\)
\(B^2=2.2005+2\sqrt{2005}^2=8020\)
\(\Rightarrow A^2< B^2\)
\(\Rightarrow A< B\)
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn
có\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
có\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)
ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)
\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)
\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)