Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{-2}\right)^{40}=\left(\frac{1}{2}\right)^{40}=\frac{1}{2^{40}}=\frac{1}{\left(2^{10}\right)^4}=\frac{1}{1024^4}<\frac{1}{\left(10^3\right)^4}=\frac{1}{1000^4}=\left(\frac{1}{-10}\right)^{12}\)
làm được bài 1:
TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)
\(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)
vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)
(\(\frac{1}{2}\))50=(\(\frac{1}{2^5}\))10=(\(\frac{1}{32}\))10
Do 1/6> 1/30 nên (\(\frac{1}{6}\))10>(\(\frac{1}{2}\))50
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left[\frac{1^5}{2^5}\right]^{10}=\left[\frac{1}{32}\right]^{10}\)
Vì 2 phân số này có cùng tử mà 6 < 30
=> \(\frac{1}{6}>\frac{1}{30}\)
=> \(\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{10}-1\right)\)
\(\Rightarrow A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-9}{10}\)
\(\Rightarrow A=\frac{-1}{10}\)
Dễ thấy \(\frac{1}{10}< \frac{1}{9}\Rightarrow\frac{-1}{10}>\frac{-1}{9}\)
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}.....\frac{-9}{10}\)
\(A=\frac{-1}{10}\)
\(\frac{-1}{10}>\frac{-1}{9}\Rightarrow A>\frac{-1}{9}\)
đ/s:..
ta có: \(\left(\frac{16}{25}\right)^{10}=\left[\left(\frac{4}{5}\right)^2\right]^{10}=\left(\frac{4}{5}\right)^{20}\)
\(\left(\frac{3}{7}\right)^{40}=\left[\left(\frac{3}{7}\right)^2\right]^{20}=\left(\frac{9}{49}\right)^{20}\)
mà \(\frac{4}{5}>\frac{9}{49}\)
\(\Rightarrow\left(\frac{4}{5}\right)^{20}>\left(\frac{9}{49}\right)^{20}\)
\(\Rightarrow\left(\frac{16}{25}\right)^{10}>\left(\frac{3}{7}\right)^{40}\)
1) Ta có: \(\left|9y-1\right|+\left(2x+3\right)^2=0\)
Mà \(\hept{\begin{cases}\left|9y-1\right|\ge0\\\left(2x+3\right)^2\ge0\end{cases}}\left(\forall x,y\right)\)
=> \(\left|9y-1\right|+\left(2x+3\right)^2\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|9y-1\right|=0\\\left(2x+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}9y-1=0\\2x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
2)
a) Ta có: \(\left[\left(-\frac{1}{3}\right)^7\right]^4=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
và \(\left[\left(-\frac{1}{2}\right)^{14}\right]^2=\left(\frac{1}{2}\right)^{28}=\frac{1}{2^{28}}\)
Vì \(\frac{1}{3^{28}}< \frac{1}{2^{28}}\Rightarrow\left[\left(-\frac{1}{3}\right)^7\right]^4< \left[\left(-\frac{1}{2}\right)^{14}\right]^2\)
b) Ta có: \(\left(-\frac{2}{3}\right)^{12}=\left[\left(-\frac{2}{3}\right)^2\right]^6=\left(\frac{4}{9}\right)^6\)
Ta thấy \(0< \frac{4}{9}< 1\)\(\Rightarrow\left(\frac{4}{9}\right)^6>\left(\frac{4}{9}\right)^7\)
\(\Rightarrow\left(-\frac{2}{3}\right)^{12}>\left(\frac{4}{9}\right)^7\)
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
(1/-2)^40>(1/10)12
đáp án là>