K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Vì b > 0 => b + 2019 > 0

Ta có: \(\frac{a}{b}=\frac{a.\left(b+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a+2019}{b+2019}=\)

\(\frac{b.\left(a+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

TH1: Nếu a < b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}< \frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}< \frac{a+2019}{b+2019}\)

TH2: Nếu a = b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

TH3: Nếu a > b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}>\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

13 tháng 7 2019

Xét tích : \(a(b+2019)=ab+2019a\)

\(b(a+2019)=ab+2019b\)

Vì b > 0 nên b + 2019 > 0

Nếu a > b thì \(ab+2019a>ab+2019b\)

\(a(b+2019)>b(a+2019)\)

\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}\)

Nếu a < b thì \(ab+2019a< ab+2019b\)

\(a(b+2019)< b(a+2019)\)

\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}\)

Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

5 tháng 3 2019

A=B chắc vậy.

Để mik tìm cách làm r gửi cho nha!!!!!

5 tháng 3 2019

B>A nha

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)

Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)

\(\Rightarrow A< B\)

Ta có:

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)

\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)

\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)

\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)

Ta lại có:

\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)

\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)

\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)

Do \(2019^{2021}+1>2019^{2019}+1\)

\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)

\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

26 tháng 3 2019

B>A

nha bn

26 tháng 3 2019

vì sao lại lớn hơn

9 tháng 3 2019

a) Ta có : 

N = 2018 + 2019/2019 + 2020

   = 2018/2019 + 2020   +    2019/2019 + 2020

Ta thấy : 2018/2019 + 2020  <  2018/2019 ( Vì 2019 + 2020 > 2019 )

              2019/2019 + 2020  < 2019/2020 ( Vì 2019 + 2020 > 2020 )

=>  2018/2019 + 2020   +    2019/2019 + 2020  <   2018/2019  +  2019/2020

=> M > N

b) Mk ko bt làm !!

c) Ta có :

  19/31 > 1/2

  17/35 < 1/2

=> 19/31 > 17/35

d) Ta có :

   3535/3434 = 1 + 1/3534

   2323/2322 = 1 + 1/2322

Ta thấy : 

1/3534 < 1/2322 ( Vì 3534 > 2322 )

=> 1 + 1/3534 < 1 + 1/2322

=> 3535/3534 < 2323/2322

Hok tốt !

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

29 tháng 6 2020

Ta thấy \(B=\frac{10^{2020}+1}{10^{2020}+1}=1\)

            \(A=\frac{10^{2018}+1}{10^{2019}+1}< 1\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

Bạn có chắc là đề đúng không?

29 tháng 6 2020

                             Bài giải

A < 1 ; B = 1 => A < B

Nếu đề bạn sai thì vào câu hỏi tương tự là có !