K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Ta có:

\(VT:\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)

\(VP:\frac{8^{10}\cdot3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)

Ta thấy :\(\frac{2^{30}}{7^{30}}vs\frac{3^{30}}{7^{30}}\)có:

\(\orbr{\begin{cases}2^{30}< 3^{30}\\7^{30}=7^{30}\end{cases}\Rightarrow\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\Leftrightarrow\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}}\)

Chúc bn hok tốt

18 tháng 1 2018

< minh khong viet cach giai

20 tháng 12 2019

a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)

               \(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)

Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)

b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)

Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

_Học tốt_

              

28 tháng 12 2016

Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)

Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)

\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)

Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)

\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

28 tháng 12 2016

giúp mình vs 

cho n là số tự nhiên

a,   (n+ 10) (n+ 15) chia hết cho 2

b,    n (n+ 1) (n+2) chia hết cho 2 và 3

c,     n (n+ 1) (2n+1) chia hết cho 2 và 3

28 tháng 12 2017

a) 2515 và 810. 330

2515 = (52 ) 15 = 530

810. 330 = (23 )10. 330 = 230. 330 = 630

Vì 530< 630

nên 2515< 810. 330

b) \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)

Vì \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)

nên \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

28 tháng 12 2017

a)\(25^{15}=5^{2^{15}}=5^{30}\)

\(8^{10}.3^{30}=2^{3^{10}}.3^{30}=\left(2.3\right)^{30}=6^{30}\)

\(5^{30}< 6^{30}=>25^{15}< 8^{10}.3^{30}\)

b)\(\frac{4^{15}}{7^{30}}=\frac{2^{2^{15}}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{6^{30}}{14^{30}}=\left(\frac{6}{14}\right)^{30}=\left(\frac{3}{7}\right)^{30}\)

Vì hai số có mũ bằng 30 nên ta so sánh :\(\frac{2}{7}< \frac{3}{7}\)

=>\(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\).

23 tháng 12 2017

Ta có:

\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)

\(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}=\frac{\left(2^3\right)^{10}x3^{30}}{7^{30}x\left(2^2\right)^{15}}=\frac{2^{30}x3^{30}}{7^{30}x2^{30}}=\frac{3^{30}}{7^{30}}=\left(\frac{3}{7}\right)^{30}\)

Nhận thấy, 2 số đều có cùng số mũ mà \(\frac{3}{7}>\frac{2}{7}\)

=> \(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}>\frac{4^{15}}{7^{30}}\)

22 tháng 11 2016

\(\frac{4^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)  và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{2^{30}}{7^{30}}\)Vậy hai vế bằng nhau 

11 tháng 1 2017

Ta có: \(\frac{4^{15}}{7^{30}}\)=\(\frac{\left(2^2\right)^{15}}{7^{30}}\)=\(\frac{2^{30}}{7^{30}}\)=\(\frac{\left(2^3\right)^{10}}{7^{30}}\)=\(\frac{8^{10}}{7^{30}}\)

\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)=\(\frac{\left(2^3\right)^{10}.3^{10}}{7^{30}.\left(2^2\right)^{15}}\)=\(\frac{2^{30}.3^{10}}{7^{30}.2^{30}}\)=\(\frac{3^{10}}{7^{30}}\)

Vì 810>310 \(\Rightarrow\)\(\frac{8^{10}}{7^{30}}\)>\(\frac{3^{10}}{7^{30}}\)

Hay \(\frac{4^{15}}{7^{30}}\)>\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)

12 tháng 1 2017

cảm ơn bạn nhìu

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30