Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy
ta lấy số mũ :
_ A sẽ có số mũ là 2001 và 2002
_ B sẽ có số mũ là 2001 và 2000
A và B sẽ có 2001 = 2001 còn 2002 > 2000
=> A > B
chúc bạn học giỏi
\(\frac{2017^{2000}+2001}{2017^{2017}+2001}\)= \(1\frac{2}{2017^{2017}+2001}\)và \(\frac{2017^{2001}-2000}{2017^{2018}-2000}\)=\(1\frac{2}{2017^{2018}-2000}\)
Vì \(\frac{2}{2017^{2017}+2001}\)<\(\frac{2}{2017^{2018}-2000}\)nên B>A
Ta có :
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
VẬY \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow\frac{1999}{2000}+\frac{2000}{2001}>\frac{1999+2000}{2000+2001}\)
\(\Rightarrow A>B\)
CHÚC BN HỌC TỐT #
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
Đây là ý kiến của mik nếu sai thì thôi nha
Ta thấy:
\(B=\frac{2001^2-2000^2}{2001^2+2000^2}< \frac{2001^2+2000^2}{2001^2+2000^2}=1\Rightarrow B< 1\) (1)
\(A=\frac{2001-2000}{2001-2000}=1\Rightarrow A=1\) (2)
Từ (1) và (2)
\(\Rightarrow B< A\)
Vậy B < A
_Hok tốt_
!!!
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
\(\frac{-1999}{2000}\)>\(\frac{-1999}{2001}\)>\(\frac{-2000}{2001}\)
bạn ghi cách giải giùm mình được không