\(\frac{-15}{61}\)và \(\frac{1111}{-4443}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

e) \(\frac{15}{16}=\frac{15.1010}{16.1010}=\frac{15150}{16160}=1-\frac{1010}{16160}\)

\(\frac{15151}{16161}=1-\frac{1010}{16161}\)

Vì \(16160< 16161\)\(\Rightarrow\frac{1}{16160}>\frac{1}{16161}\)

\(\Rightarrow\frac{1010}{16160}>\frac{1010}{16161}\)\(\Rightarrow1-\frac{1010}{16160}< 1-\frac{1010}{16161}\)

hay \(\frac{15}{16}< \frac{15151}{16161}\)

25 tháng 4 2017

a)\(\frac{18}{91}\)<   \(\frac{23}{114}\)       ;     b)    \(\frac{1313}{9191}\) <    \(\frac{1111}{7373}\)

25 tháng 4 2017

a)\(\frac{18}{91}\)\(< \)\(\frac{23}{114}\)

b)\(\frac{1313}{9191}\)\(< \)\(\frac{1111}{7373}\)

26 tháng 7 2017

a) Ta có :

\(\frac{18}{91}< \frac{18}{90}=\frac{1}{5}=\frac{23}{115}< \frac{23}{114}\)

\(\Rightarrow\frac{18}{91}< \frac{23}{114}\)

b) Ta có :

\(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)

\(\frac{213}{523}=1-\frac{310}{523}\)

Mà \(1-\frac{310}{520}< 1-\frac{310}{523}\)

\(\Rightarrow\frac{21}{52}< \frac{213}{523}\)

c) Ta có : \(\frac{1313}{9191}=\frac{13}{91}=\frac{1}{7}=\frac{11}{77};\frac{1111}{7373}=\frac{11}{73}\)

Mà \(\frac{11}{77}< \frac{11}{73}\)nên \(\frac{1313}{9191}< \frac{1111}{7373}\)

d) Ta có :

\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

\(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)

Mà \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)nên \(\frac{n}{n+1}< \frac{n+2}{n+3}\)

26 tháng 7 2017

a) Ta có : \(\frac{18}{91}< \frac{18}{90}=\frac{1}{5}< \frac{23}{115}< \frac{23}{114}\)

\(\Rightarrow\)       \(\frac{18}{91}< \frac{23}{114}\)

Vậy \(\frac{18}{91}< \frac{23}{114}\)

b) Ta có : \(\frac{21}{52}< \frac{21}{56}=\frac{3}{8}< \frac{213}{568}< \frac{213}{523}\)

\(\Rightarrow\)      \(\frac{21}{52}< \frac{213}{523}\)

Vậy \(\frac{21}{52}< \frac{213}{523}\)

c) Ta có : \(\frac{1313}{9191}=\frac{1313:1313}{9191:1313}=\frac{1}{7}\)

               \(\frac{1111}{7373}=\frac{1111:101}{7373:101}=\frac{11}{73}\)

  Lại có :   \(\frac{1}{7}< \frac{11}{77}< \frac{11}{73}\)

\(\Rightarrow\)       \(\frac{1313}{9191}< \frac{1111}{7373}\)

Vậy \(\frac{1313}{9191}< \frac{1111}{7373}\)

d) Ta có : \(1-\frac{n}{n+1}=\frac{n+1}{n+1}-\frac{n}{n+1}=\frac{1}{n+1}\)

                \(1-\frac{n+2}{n+3}=\frac{n+3}{n+3}-\frac{n+2}{n+3}=\frac{1}{n+3}\)

      Vì \(n+1< n+3\)

\(\Rightarrow\)\(\frac{1}{n+1}>\frac{1}{n+3}\)

\(\Rightarrow\) \(\frac{n}{n+1}< \frac{n+2}{n+3}\)

Vậy \(\frac{n}{n+1}< \frac{n+2}{n+3}\)

                   Chúc m.n hok tốt ♡❤️

13 tháng 8 2015

\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)

mà \(\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

vậy A < 1/2

14 tháng 3 2017

1/2>B ko tin thì hỏi nha

14 tháng 3 2017

giải ra đi

5 tháng 4 2018

ta co:

2A=2(2 mu 60 +1 /2 mu 61 +1)

2A=2 mu 61 +2 / 2 mu 61 +1

2A=2 mu 61 +1+1/2 mu 61 +1

2A=1+1/2 mu 61 +1

ta co:

2B=2(2 mu 61 +1/2 mu 62 +1)

2B=2 mu 62 +2/2 mu 62+1

2B=2 mu 62 +1+1/2 mu 62 +1

2B=1+1/2 mu 62 +1

mà 1+1/2 mu 61+1>1+1/2 mu 62 +1 nen 2A >2B

vậy A>B

nhớ k đúng cho mk nha

5 tháng 4 2018

Ta có:

2.A=2 mủ 61 +2/2 mủ 61 +1=1+(2/2 mủ 61 +1)

2.B=2 mủ 62 + 2 /2 mủ 62 +1=1+(2/2 mủ 62 + 1)

vì ... nên 2.A >2.B.Vậy A>B

5 tháng 4 2018

* Cách 1 : 

Ta có : 

\(5A=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=\frac{5^{61}+1}{5^{61}+1}+\frac{4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\)

\(5B=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=\frac{5^{62}+1}{5^{62}+1}+\frac{4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\)

Vì \(\frac{4}{5^{61}+1}>\frac{4}{5^{62}+1}\) nên \(1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\) 

\(\Rightarrow\)\(5A>5B\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~