Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a) \(\dfrac{-1}{-4}\)=\(\dfrac{1}{4}>0\)
\(\dfrac{3}{-4}< 0\)
\(\Rightarrow\dfrac{1}{4}>\dfrac{3}{-4}hay\dfrac{-1}{-4}>\dfrac{3}{-4}\)
b) Ta có:
\(\dfrac{15}{17}=1-\dfrac{2}{17}\\ \)
\(\dfrac{25}{27}=1-\dfrac{2}{27}\\ \\ \)
Mà \(\dfrac{2}{17}>\dfrac{2}{27}\left(17< 27\right)\)
\(\Rightarrow1-\dfrac{2}{17}< 1-\dfrac{2}{27}\)hay \(\dfrac{15}{17}< \dfrac{25}{27}\)
Ta có: Trường hợp 1:
a<b
\(a< b\Leftrightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Trường hợp 2:
a>b
\(a>b\Leftrightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+a.2017}{b\left(b+2017\right)}\left(1\right)\)
\(\dfrac{a+2017}{b+2017}=\dfrac{b.\left(a+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+b.2017}{b.\left(b+2017\right)}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\) + Nếu a>b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}>\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
+ Nếu a<b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}< \dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
+ Nếu a=b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}=\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)
tính chất trên gọi là tính chất bắc cầu, ta so sánh hai phân số với một số (phân số) thứ 3.
\(A=\frac{8056}{2012.16-1982}\)= \(\frac{2014.4}{2012.15+2012-1982}\)=\(\frac{2014.4}{2012.15+30}\)=\(\frac{2014.4}{2012.15+2.15}\)=\(\frac{2014.4}{15.\left(2012+2\right)}=\frac{2014.4}{15.2014}=\frac{4}{15}\)
B = \(\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
= \(\frac{1.2.3.2+2.2.2.12+4.4.2.24+7.7.2.42}{1.2.3.9+2.12.2.9+4.24.4.9+7.42.7.9}\)
= \(\frac{2\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}{9\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}\)
= \(\frac{2}{9}\)
Ta có: \(\frac{4}{15}=\frac{4.3}{15.3}=\frac{12}{45};\frac{2}{9}=\frac{2.5}{9.5}=\frac{10}{45}\)
Vì \(\frac{12}{45}>\frac{10}{45}\Rightarrow\frac{4}{15}>\frac{2}{9}\Rightarrow A>B\)
Vậy A > B
Nếu a/b<0 thì a/b>a+1/b+1
Nếu a/b>0 thì a/b<a+1/b+1
Nếu a/b=1 thì a/b=a+1/b+1