\(A=\frac{10^{11}-1}{10^{12}-1}\)

với \(B=\frac{10^{10...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

Ta có \(A=\frac{10^{11}-1}{10^{12}-1}\)

=> \(10A=\frac{10^{12}-10}{10^{12}-1}\)

=>\(10A=\frac{\left(10^{12-1}\right)-9}{10^{12}-1}\)

=>\(10A=1-\frac{9}{10^{12}-1}\)     (   1  )

Ta có \(B=\frac{10^{10}+1}{10^{11}+1}\)

=>\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)  (  2  )

Từ 1 và 2 => 10A < 10B => A < B

21 tháng 7 2016

Ta có : 

\(A=\frac{10^{11}-1}{10^{12}-1}\)                                                     \(B=\frac{10^{11}+1}{10^{11}+1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)                                           \(10B=\frac{10^{11}+10}{10^{11}+1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)                                      \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)

\(10A=1-\frac{9}{10^{12}-1}\)                                       \(10B=1+\frac{9}{10^{11}+1}\)

Ta thấy :         \(1-\frac{9}{10^{12}-1}< 1\) mà   \(1+\frac{9}{10^{11}+1}>1\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

Ủng hộ mk nha !!! ^_^

26 tháng 7 2016

B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

Dấu "/" nghĩa là phân số nhé

26 tháng 7 2016

Ta có : 

\(A=\frac{10^{11}-1}{10^{12}-1}\)                                                      \(B=\frac{10^{10}+1}{10^{11}+1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)                                               \(10B=\frac{10^{11}+10}{10^{11}+1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)                                          \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)

\(10A=1-\frac{9}{10^{12}-1}\)                                           \(10B=1+\frac{9}{10^{11}+1}\)

Ta thấy    \(1-\frac{9}{10^{12}-1}< 1\)  mà   \(1+\frac{9}{10^{11}+1}>1\)

=> A < B

Vậy A < B

Ủng hộ mk nha !!! ^_^

23 tháng 1 2017

A>b nha!

23 tháng 1 2017

để so sánh A và B ta so sánh 

 \(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)

Ta có \(10^{11}-1< 10^{11}+1\)

    và  \(10^{12}-1>10^{11}+1\)

=> A<B

4 tháng 1 2016

\(a.\frac{10^{11}-1}{10^{12}-1}<\frac{10^{10}+1}{10^{10}+1}\)

\(b.\)(\(\frac{1}{80}\))\(^7\)\(>\)(\(\frac{1}{243}\))\(^6\)

Tick mình nha

6 tháng 3 2018

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\)  theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)

\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)

\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)

Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)

\(\Leftrightarrow A< B\)

6 tháng 3 2018

Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)

..... (EZ)

26 tháng 1 2017

a>b nha

26 tháng 1 2017

\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

Vì \(1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\)

\(\Rightarrow A< B\)

1 tháng 2 2017

Ta có :

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

1 tháng 2 2017

bài này ko cần cách làm tớ chỉ ra kết quả thui

1 tháng 3 2019

\(\frac{-207}{809}\)1

\(\frac{175}{-526}\)1

=> \(\frac{-207}{809}\)\(\frac{175}{-526}\)

Mik bt làm câu a thôi nha!

Câu b hoei khó