K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

ta có: 201810+201811=201810.(1+2018) = 201810.2019

201911=201910.2019

=> 201810<201910 => 201810.2019 < 201910.2019

=> 201810+201811<201911

2 tháng 7 2018

ta có:

201810+201811=201810.(1+2018) = 201810.2019

201911=201910.2019

=> 201810<201910 => 201810.2019 < 201910.2019

=> 201810+201811<201911

16 tháng 7 2019

A lớn hơn B

2 tháng 7 2018

Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)

\(\Rightarrow2A>2B\Rightarrow A>B\)

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

20 tháng 8 2020

\(7^{2019}-7^{2020}=7^{2019}\left(1-7\right)\)

\(7^{2018}-7^{2019}=7^{2018}\left(1-7\right)\)

Mà \(7^{2019}>7^{2018}\)

\(\Rightarrow7^{2019}-7^{2020}>7^{2018}-7^{2019}\)

# Học tốt

20 tháng 8 2020

\(7^{2019}-7^{2020}=7^{2019}-7\cdot7^{2019}=-6.7^{2019}\)  

\(7^{2018}-7^{2019}=7^{2018}-7\cdot7^{2018}=-6\cdot7^{2018}\)

vì \(7^{2019}>7^{2018}\Rightarrow-6\cdot7^{2019}< -6\cdot7^{2018}\)   

Vậy \(7^{2019}-7^{2020}< 7^{2018}-7^{2019}\)