\(\sqrt{30}-\sqrt{29}\) và B=\(\sqrt{29}-\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

Ta có:

\(A=\sqrt{30}-\sqrt{29}=\frac{30-29}{\sqrt{30}+\sqrt{29}}=\frac{1}{\sqrt{30}+\sqrt{29}}\)

\(B=\sqrt{29}-\sqrt{28}=\frac{29-28}{\sqrt{29}+\sqrt{28}}=\frac{1}{\sqrt{29}+\sqrt{28}}\)

Mà : \(\sqrt{30}+\sqrt{29}> \sqrt{29}+\sqrt{28}\Rightarrow \frac{1}{\sqrt{30}+\sqrt{29}}< \frac{1}{\sqrt{29}+\sqrt{28}}\Rightarrow A< B\)

18 tháng 7 2017

A= \(\frac{\left(\sqrt{30}\right)^2-\left(\sqrt{29}\right)^2}{\sqrt{30}+\sqrt{29}}\)\(\frac{1}{\sqrt{30}+\sqrt{29}}\)

B= \(\frac{\left(\sqrt{29}\right)^2-\left(\sqrt{28}\right)^2}{\sqrt{29}+\sqrt{28}}\)\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Mà ta có \(\sqrt{30}+\sqrt{29}\)>\(\sqrt{28}+\sqrt{29}\)

Nên \(\frac{1}{\sqrt{30}+\sqrt{29}}\)<\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Suy ra A<B

18 tháng 7 2017

CÓ MA BIẾT KIT

27 tháng 8 2017

a) 2 = √4 => √26 - √8 > 2

b) Dễ thấy √29 chắc chắn nhỏ hơn √41 => √29-√41 chắc chắn âm, còn 5=√25 => kết  quả sẽ ra dương(√25>√10)

Suy ra √29 - √41 < 5- √10

Đây chỉ là cách tính nhanh của mình ,bn có thể dùng máy tính để tính lại.

17 tháng 7 2018

Sorry mình ko biết

20 tháng 6 2016

a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)

=> A2=8+2\(\sqrt{3}\)

B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)

=>A>B

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Bạn tham khảo link sau:

Câu hỏi của Tô Thu Huyền - Toán lớp 9 | Học trực tuyến

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

22 tháng 7 2018

a)\(-3\sqrt{29}=-\sqrt{3^2.29}=-\sqrt{261}\)

\(-15=-\sqrt{225}\)

Ta có: \(\sqrt{225}< \sqrt{261}\)

\(\Rightarrow-\sqrt{225}>-\sqrt{261}\)

\(\Rightarrow-15>-3\sqrt{29}\)

Vậy \(-15>-3\sqrt{29}\)

b) Ta có: \(\sqrt{3}< \sqrt{4}\)

\(\Rightarrow\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy \(1>\sqrt{3}-1\)

Tham khảo nhé~