Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)
\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
suy ra x+y=0 hoặc y+z=0 hoặc x+z=0
hay x=-y hoặc y=-z hoặc x=-z
thay vào D ta tính dc kq
\(\frac{x-1}{2017}+\frac{x-2}{2018}+\frac{x-3}{2019}=-3\)
\(\Leftrightarrow\frac{x-1}{2017}+1+\frac{x-2}{2018}+1+\frac{x-3}{2019}+1=0\)
\(\Leftrightarrow\frac{x+2016}{2017}+\frac{x+2016}{2018}+\frac{x+2016}{2019}=0\)
\(\left(x+2016\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)=0\)
vì \(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\ne0\) nên
x+2016=0
\(\Leftrightarrow\)x=-2016
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.
\(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-1+1-\dfrac{x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{x-2019}{2018}+\dfrac{2019-x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}+\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)
\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
\(\Leftrightarrow2019-x=0\) (do \(\dfrac{1}{2017}>\dfrac{1}{2019}\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}>0\))
\(\Rightarrow x=2019\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
hay \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\)
Thay a = b = c = 0 vào M rồi tính như bình thường nha bạn!
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}\Leftrightarrow a=b=c=0}\)
\(\Rightarrow\)\(M=\left(a-2018\right)^{2019}+\left(b-2018\right)^{2019}-\left(c+2018\right)^{2019}\)
\(\Rightarrow\)\(M=-2018^{2019}-2018^{2019}-2018^{2019}\)
\(\Rightarrow\)\(M=-3.2018^{2019}\)
Chúc bạn học tốt ~
\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)
\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))
\(\Leftrightarrow x=-2020\)
Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)
Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)
\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)
\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)
Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)
\(2019^2+2018^2=2019^2+2018^2+0\)
Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)
\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)
\(\Leftrightarrow C< D\)