\(1+\sqrt{15}và\sqrt{24}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Nik t tạo ra ko để cho m trả lời linh tin nha :))))))) Nguyễn việt Hiếu tk fake Ai ko tin mình là Hiếu CTV thì ib 

18 tháng 6 2018

Ta có : 

\(\left(1+\sqrt{15}\right)^2=1+2\sqrt{15}+15=16+2\sqrt{15}\)

\(\left(\sqrt{24}\right)^2=24=16+8=16+2.4=16+2\sqrt{16}\)

Ta thấy \(16+2\sqrt{15}< 16+2\sqrt{16}\) nên \(\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)

\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)

Vậy \(1+\sqrt{15}< \sqrt{24}\)

Chúc bạn học tốt ~ 

27 tháng 9 2017

cả hai bài đều giải bằng cách  bình phương cả hai vế rồi so sánh

27 tháng 9 2017

So sánh từng vế:

\(\sqrt{15}+1=4,872983346\)

\(\sqrt{24}=4,898979486\)

Vậy: \(\sqrt{15}+1< \sqrt{24}\)

\(\sqrt{2002}+\sqrt{2004}=89,50977321\)

\(2\sqrt{2005}=89,5545271\)

Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)

P/s: Ko chắc

27 tháng 8 2017

cái đầu tiên lớn hơn

cái sau be hon

27 tháng 8 2017

CÁI ĐẦU TIÊN LỚN HƠN CÁI THỨ 2

                  DỄ THẾ

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

31 tháng 7 2018

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~

1 tháng 9 2019

a) 

Ta có:

\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)

\(=31+2\sqrt{130}\)(1)

Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)

Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)

13 tháng 9 2019

a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)

b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)

\(\sqrt{65}>\sqrt{64}=8\)

\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)

7 tháng 9 2019

a) Ta có: \(\left(2+\sqrt{3}\right)^2=4+2.2\sqrt{3}+\left(\sqrt{3}\right)^2=7+\sqrt{48}\)

\(\left(1+\sqrt{5}\right)^2=1+2\sqrt{5}+5=6+2\sqrt{5}=6+\sqrt{20}\)

\(\hept{\begin{cases}\sqrt{20}< \sqrt{48}\\6< 7\end{cases}}\Rightarrow\sqrt{20}+6< \sqrt{48}+7\)

\(\Rightarrow\left(1+\sqrt{5}\right)^2< \left(2+\sqrt{3}\right)^2\Rightarrow1+\sqrt{5}< 2+\sqrt{3}\)

b) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

7 tháng 9 2019

cảm ơn bạn nhiều