Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1.2.3.4.5...98.99}{10}\)
\(M=1.2.3.4.5.6.7.8.9.11.12...98.99\)
VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100
VÀ 2/51.2/52.....2/100=1/1.1/3.......1/99
SUY RA BẰNG NHAU
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times\frac{4^2}{4\times5}\)
\(=\frac{1}{2}\times\frac{4}{6}\times\frac{9}{12}\times\frac{16}{20}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
Gạch các số giống nhau của phép nhân đó là 2; 3; 4. Ta được kết quả bằng
\(=\frac{1}{5}\)
\(A=\frac{10.11+50.55+70.77}{11.12+55.60+77.84}\)
\(=\frac{10.11+5.10.5.11+7.10.7.11}{11.12+11.5.12.5+11.7.12.7}\)
\(=\frac{10.11\left(1+25+49\right)}{11.12\left(1+25+49\right)}\)
\(=\frac{10.11}{11.12}=\frac{10}{12}=\frac{5}{6}\)
\(B=\frac{1\times3\times5\times7\times........\times49}{26\times27\times28\times...........\times50}\)
\(=\frac{\left(1\times3\times5\times7\times.........\times49\right).\left(2\times4\times6.........48\times50\right)}{\left(26\times27\times28\times.........\times50\right).\left(2\times4\times6\times...........\times48\times50\right)}\)
\(=\frac{1\times2\times3\times4\times..........\times50}{\left(26\times27\times28\times..............\times50\right)2^{25}\left(1\times2\times3\times4\times............\times25\right)}=\frac{1}{2^{25}}\)
\(C=\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
\(=\frac{1.2.6\left(1+8+64+343\right)}{1.6.9\left(1+8+64+343\right)}\)
\(=\frac{1.2.6}{1.6.9}=\frac{2}{9}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{33554432}\)
\(C=\frac{28}{117}\)
\(a)\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{-11.13^7}{11^5.13^8}=\frac{-1}{11^4.13}\) (Bạn xem thử xem có sai đề không nhé)
\(c)\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3+1\right)}{2^9.3^{10}}=\frac{2.4}{3}=\frac{8}{3}\)
\(d)\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(5.4+9\right)}=\frac{8}{20+9}=\frac{8}{29}\)
\(a)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{\left(-11\right)\cdot13^7}{11^5\cdot13^8}=\frac{-1}{11^4\cdot13}=\frac{-1}{14641\cdot13}=\frac{-1}{190333}\)
\(c)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2\cdot2}{3}=\frac{4}{3}\)
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
Bài làm
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\frac{1}{x+2}=\frac{1}{2016}\)
\(\Rightarrow x+2=2016\)
\(x=2014\)