K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)

\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)

b) 199010 + 19909

= 19909 ( 1990 + 1 )

= 19909 . 1991 < 199110 = 19919 . 1991

Vậy 199010 + 19909 < 199110

1 tháng 5 2016

tham khảo nha

http://olm.vn/hoi-dap/question/166511.html

1 tháng 5 2016

bn nhấn vào câu hỏi tương tự là đc

17 tháng 8 2015

ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13

17 tháng 8 2015

ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13

18 tháng 7 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)

=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)

=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)

=> B < A

18 tháng 7 2016

Bài này mình biết làm nè , nhưng ... dài dòng lắm 

20 tháng 4 2017

Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)

\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)

\(=>10A=1+\frac{9}{10^{1991}+1}\)

Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)

Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)

Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)

\(=>A>B\)

20 tháng 4 2017

A < B

Chắc thế

:)

:)

\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)

Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)

\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

\(=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow B< A\)

18 tháng 7 2016

 Theo  thứ tự nhé

a) <

b) <

c) >

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)