Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\frac{a+1}{a}<\frac{a+1+2}{a+2}=\frac{a+3}{a+2}\) (áp dụng công thức \(\frac{a}{b}<\frac{a+m}{b+m}\))
\(\Rightarrow\frac{a+1}{a}<\frac{a+3}{a+2}\)
d) \(\frac{a}{a+6}<\frac{a+1}{a+6+1}=\frac{a+1}{a+7}\)
\(\Rightarrow\frac{a}{a+6}<\frac{a+1}{a+7}\)
2. a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(3^3\right)^{25}=27^{25}\)
Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)
c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)
Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
\(a.\frac{1}{2^{300}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{8^{100}}\)
\(\frac{1}{3^{200}}=\frac{1}{\left(3^2\right)^{100}}=\frac{1}{9^{100}}\)
\(\text{Vì }\frac{1}{8}>\frac{1}{9}\Rightarrow\frac{1}{\left(2^3\right)^{100}}>\frac{1}{\left(3^2\right)^{100}}\Rightarrow\frac{1}{2^{300}}>\frac{1}{3^{200}}\)
\(b.\frac{1}{5^{199}}:\text{Giữ nguyên}\)
\(\frac{1}{3^{200}}=\frac{1}{3^{199}\cdot3}\)
\(\frac{1}{5^{199}}< \frac{1}{3^{199}\cdot3}\Rightarrow\frac{1}{5^{199}}< \frac{1}{3^{200}}\)
2 bài dưới bn làm tương tự nhé
\(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\)
\(A=\frac{4064340600}{4066362660}+\frac{4064341605}{4066362660}+\frac{4070408792}{4066362660}\)
\(A=3,000000742\)
\(B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{17}\)
\(B=1,939552553\)
vì đây là so sánh hai dòng phân số nên ta đổi ra thập phân nhé
do 3,000000742 > 1,939552553 và 3 > 1 Nên A > B nhé
đúng thì k nhé
chúc học giỏi !!!!
3)
3/5 + 3/7-3/11 / 4/5 + 4/7- 4/11
= 3.( 1/5 + 1/7 - 1/11)/4.(1/5+1/7-1/11)
= 3/4
1,
ta có B = 196+197/197+198 = 196/(197+198) + 197/(197+198)
196/197 > 196/197+198
197/198 > 197/197+198
=> A>B