Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
Cái này mk từng làm nhưng có chút sai sót vậy nên bn sữa cho mk chút nhé ! Thay vì N = ... thì bn thay bằng A = ... nha
Ta có :
N = 40 ( A = 40 )
Ta có : \(\dfrac{1}{3}A=\dfrac{3^{10}+1}{3\left(3^9+1\right)}=\dfrac{3^{10}+1}{3^{10}+3}=\dfrac{3^{10}+3-2}{3^{10}+3}\)
\(=\dfrac{3^{10}+3}{3^{10}+3}-\dfrac{2}{3^{10}+3}=1-\dfrac{2}{3^{10}+3}\)
\(\dfrac{1}{3}B=\dfrac{3^9+1}{3\left(3^8+1\right)}=\dfrac{3^9+1}{3^9+3}=\dfrac{3^9+3-2}{3^9+3}\)
\(=\dfrac{3^9+3}{3^9+3}-\dfrac{2}{3^9+3}=1-\dfrac{2}{3^9+3}\)
Vì 2 > 0 , 0 < 39 + 3 < 310 + 3
\(\Rightarrow\dfrac{2}{3^{10}+3}< \dfrac{2}{3^9+3}\)\(\Rightarrow-\dfrac{2}{3^{10}+3}>-\dfrac{2}{3^9+3}\)
\(\Rightarrow1-\dfrac{2}{3^{10}+3}>1-\dfrac{2}{3^9+3}\Rightarrow A>B\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
a: \(\dfrac{5}{24}< \dfrac{15}{24}=\dfrac{5}{8}\)
b: \(\dfrac{6+9}{6\cdot9}=\dfrac{15}{54}\)
4/9=24/54
2/3=36/54
Do đó: \(\dfrac{15}{54}< \dfrac{24}{54}< \dfrac{36}{54}\)
Áp dụng bất đẳng thức \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(\dfrac{3^{11}+1}{3^{10}+1}< \dfrac{3^{11}+1+2}{3^{10}+1+2}=\dfrac{3^{11}+3}{3^{10}+3}=\dfrac{3\left(3^{10}+1\right)}{3\left(3^9+1\right)}=\dfrac{3^{10}+1}{3^9+1}\)
\(\Leftrightarrow\dfrac{3^{11}+1}{3^{10}+1}< \dfrac{3^{10}+1}{3^9+1}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)
b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)
c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)
Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)
\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)
hay \(A=3-\dfrac{2}{3^9+1}\)
Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)
\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)
hay \(B=3-\dfrac{2}{3^8+1}\)
Ta có: \(3^9+1>3^8+1\)
\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)
hay A>B