K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

a)Ta có:

\(2^{24}=\left(2^6\right)^4=64^4\)

\(3^{16}=\left(3^4\right)^4=81^4\)

Vì 644<814 nên 224<316

b)Ta có:

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(3^{20}=\left(3^2\right)^{10}=9^{10}\)

Vì 810<910 nên 230<320

8 tháng 7 2016

a, 224 = 23.8 = (23)8 = 88

    316 = 32.8 = (32)8 = 98

Có 88 < 98

=> 224 < 316

b, 230 = 23.10 = (23)10 = 810

   320 = 32.10 = (32)10 = 910

Vì 810 < 910

=> 230 < 320

3 tháng 10 2018

a) \(2^{24}< 3^{16}\)

b) \(3^{34}>5^{20}\)

c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)

d) \(199^{20}>200^{15}\)

8 tháng 10 2020

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)

c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)

\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)

Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)

\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

26 tháng 9 2016

ta có 430=230.230=(23)10.(22)15=810.415

mà 810.415>810.315\(\Rightarrow\) 810.415>810.311

mặt khác 810 .311=810.310.3=2410 .3 \(\Rightarrow\) 430>2410.3

ta lại có 230>0 , 330>0 nên 230+330+430>430

\(\Rightarrow\) 230+330+430>430>3.2410

\(\Rightarrow\) 230+330+430>3.2410

vậy 230+330+430>3.2410

26 tháng 9 2016

cảm ơn bạn nhiều nha

12 tháng 9 2016

mày mà cũng chs cái này ak

5 tháng 8 2018

a) \(2^{24}=2^{3.8}=8^8\)      \(3^{16}=3^{2.8}=9^8\)

Do \(8^8< 9^8\)=>   \(2^{24}< 3^{16}\)

b)  \(3^{200}=3^{2.100}=9^{100}\);      \(2^{300}=2^{3.100}=8^{100}\)

Do  \(9^{100}>8^{100}\)=>  \(3^{200}>2^{300}\)

c)  \(7^{20}=7^{4.5}=2401^5>71^5\)

Vậy  \(7^{20}>71^5\)

d)  \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\);      \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)

Do  \(8^{10}< 9^{10}\)nên   \(\left(-2\right)^{30}< \left(-3\right)^{20}\)

e) \(\left(-5\right)^9< 0\);   \(\left(-2\right)^{18}=2^{18}>0\)

Vậy  \(\left(-5\right)^9< \left(-2\right)^{18}\)

27 tháng 7 2018

\(a,2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8>8^8\)

\(\Rightarrow3^{16}>2^{24}\)

\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow3^{200}>2^{300}\)

27 tháng 7 2018

trên google có lên mà chép tôi xem zồi mà cx dễ bnj tự làm đi

5 tháng 2 2016

Giải :

a, Ta có :

2150 = (23)50 = 850     (1)

Lại có :

3100 = (32)50 = 950      (2)

Từ (1) và (2) => 2150 < 3100 (vì 850 < 950 )

b, Ta có :

224 = (23)8 = 8(1)

Lại có :

316 = (32)8 = 9(2)

Từ (1) và (2) => 224 < 316  (vì 88 < 98 )

5 tháng 2 2016

2150=(23)50=8​50 < 950=(32)50=3100

224=(2​3)8=88 < 9​8 =(3​2)8=3​16

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)