Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy B < 1 vì 102011 + 1 < 102012 + 1. Áp dụng tính chất nếu \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ta có :
\(B=\frac{10^{2011}+1}{10^{2012}+1}<\frac{\left(10^{2011}+1\right)+9}{\left(10^{2012}+1\right)+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10.\left(10^{2010}+1\right)}{10.\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
Hình như bạn chép sai đề bài phải là : 199^20 và 2003^15
Ta có: 199^20 < 200^20 = ( 8.25 )^20 = (2^3.5^2)^20 = 2^60 . 5^40
2003^15 > 2000^15 = ( 16.125)^15 = ( 2^4.5^3)^15 = 2^60 . 5^45
Vì 2^60. 5^45 > 2^60 . 5^40 nên 2003^15 > 199^20
ta có 199^20=(199^4)^5
203^15=(203^3)^5
Mà 199^4>203^3 nên (199^4)^5>(203^3)^5
hay 199^20>203^15
Ta có: S=22+42+62+...+202
=(2.1)2+(2.2)2+(2.3)2+...+(2.10)2
=22.12+22.22+22.32+...+22.102
=22.(1+22+32+...+102)
Mà 12+22+32+...+102=385 nên:
S=22.385
=4.385
=1540
Vậy S=1540
\(3A=3+3^2+3^3+....+3^{21}\Leftrightarrow3A-A=2A=3^{21}-1\Rightarrow A=\frac{3^{21}-1}{2}\)
\(B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{1}{2}\)
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
2010+1/2010-1>1 (1)
2010-1/2010-3<1 (2)
Từ (1) (2) \(\Rightarrow\) 2010+1/2010-1>2010-1/2010-3