Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
202^303 và 303^202
202^(3.101) và 303^(2.101)
(202^3)^101 và (303^2)^101
202^3 và 303^2
(2.101)^3 va (3.101)^2
2^3.101^3 va 3^2.101^2
8.101.101^2 va 9.101^2
8.101 va 9
808 > 9 => 202^303 > 303^202
Ta co : 202303 va 303202
=> 202303=(2022)101=40804101 (1)
=>303202=(3033)101=27818127101 (2)
Tu (1) va (2) suy ra 202303<303202
lik e nhe
202303=2023x101=(2023)101=8242408101
303202=3032x101=(3032)101=91809101
Vì 8242408101 > 91809101
=> 202303 > 91809101
Ta có:
\(202^{303}=\left(101.2\right)^{303}=101^{606}\)
\(303^{202}=\left(101.3\right)^{202}=101^{606}\)
Vì \(101^{606}=101^{606}\)nên \(202^{303}=303^{202}\)
Vậy \(202^{303}=303^{202}\)
Ta có : 303^202 = ( 303^2)^101 = 91809^101
202^303 = ( 202^3)^101 = 8242408^101
Vì 8242408^101 > 91809^101
Nên 303^202 < 202^303
Ta có :
303202 = 101202 . 3202 = 101202 . (32)101 = 101202 . 9101
202303 = 101303 . 2303 = 101303 . (23)101 = 101303 . 8101
Vì 101202 < 101303 ; 9101 > 8101
=> không so sánh được
\(202^{303}=\left(202^3\right)^{101}=\text{8,242,408}^{101}\)
\(303^{202}=\left(303^2\right)^{101}=\text{91,809}^{101}\)
Vì : \(\text{8,242,408}^{101}>91809^{101}\)
Nên :\(202^{303}>303^{202}\)
202303 = ( 2023 )101 = 8242408101
303202 = ( 3032 )101 = 91809101
Vì 8242408 > 91809
=> 8242408101 > 91809101
=> 202303 > 303202
202303 = ( 2023 )101 = 8242408101
303202 = ( 3032 )101 = 91809101
Vì 8242408 > 91809
=> 8242408101 > 91809101
=> 202303 > 303202
\(202^{303}=101^{202}.101^{101}.2^{303}\)
\(303^{202}=101^{202}.3^{202}\)
Dễ thấy :
\(101^{101}.2^{303}>64^{101}.2^{303}=2^{303}.2^{303}=4^{303}\)
Mà \(4^{303}>3^{202}\)
\(\Rightarrow202^{303}>303^{202}\)
\(202^{303}=\left(2.101\right)^{3.101}=\left(2^3.101^3\right)^{101}=\left(8.101^3\right)^{101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2.101^2\right)^{101}=\left(9.101^2\right)^{101}\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)