Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2016}{2017}-\left(\dfrac{2016}{2017}+\dfrac{11}{19}\right)=\dfrac{2016}{2017}-\dfrac{2016}{2017}-\dfrac{11}{19}=-\dfrac{11}{19}\)
a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)
b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và
\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)
\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và \(\frac{2015}{2016}\)< \(\frac{2017}{2016}\)và \(\frac{2016}{2015}\)
\(\text{Ta có}:\left|-\frac{2016}{2017}\right|>0\)
\(\left(\frac{2017}{-2016}\right)^{2001}< 0\left(\text{số mũ lẻ}\right)\)
\(\text{Do đó }\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\text{Vậy}\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
Ta có : \(|\frac{-2016}{2017}|>0>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\Rightarrow|\frac{-2016}{2017}|>\left(\frac{2017}{-2016}\right)^{2001}\)
Ta có : A= ( 26^2017 + 3^2017 )^2016 = 26^2017*2016 + 3^2017*2016 (1) ; B = ( 26^2016+ 3^2016)^2017= 26^2016*2017+ 3^2016*2017 (2) . Từ (1) và (2) suy ra dpcm
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp