Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
- \(A=\frac{2015}{2016}+\frac{2016}{2017}>1;\)
- \(B=\frac{2015+2016}{2016+2017}< 1\)
- Nên A>B
ta có 2015/2016+2016/2017+2017/2015=(1-1/2016)+(1-1/2017)+(2+1/2015)
=4-(1/2016+1/2017-1/2015)
1/2016<1; 1/2017<1 nên 1/2016+1/2017<2 suy ra 1/2016+1/2017-1/2015<1(vì 1/2015<1)
4-(1/2016+1/2017-1/2015)>4-1=3
2015/2016+2016/2017+2017/2015>3
cho mik nhé
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B
Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018
B= 2015 / (2015 + 2016+2017) + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)
vì 2015/2016 > 2015/(2016 + 2017+2018) ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)
=> A>B
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q